
Better, Faster, and Cheaper: What is Better Software?

Burak Turhan
Department of Information

Processing Science
University of Oulu

90014, Oulu, Finland
burak.turhan@oulu.fi

Çetin Meriçli
Department of Computer

Engineering
Boğaziçi University

34342, Istanbul, Turkey
cetin.mericli@boun.edu.tr

Tekin Meriçli
Department of Computer

Engineering
Boğaziçi University

34342, Istanbul, Turkey
tekin.mericli@boun.edu.tr

ABSTRACT
Background: Defects are related to failures and they do
not have much power for indicating a higher quality or a
better system above the baseline that the end-users expect.
Nevertheless, defect counts are commonly used as measures
to capture the quality of a system. Further, the statistical
association between internal design metrics and quality in
terms of defects has been shown in previous work.

Aims: Our goal is to conduct an initial data analysis for our
longer-term goal of investigating whether there exist a sim-
ilar relationship between the internal design characteristics
of a system and quality perception of end-users.

Method: We carry out an exploratory case study in robotic
soccer domain. We propose a quality measure derived from
the performances in the robotic soccer competitions. Then,
we compare the design characteristics and quality levels of
two cases. In particular, we compare the two different im-
plementations of a system in terms of their design metrics
and their overall quality as measured by game scores.

Results: There are statistically significant differences be-
tween the two implementations in six out of seven design
metrics. The implementation that has a much larger code
base shows significantly better design characteristics in terms
of complexity. We see significant differences in the quality
levels as well.

Conclusions: We observe that the implementation that
has achieved a better performance in the tournament also
has better design characteristics for almost all attributes.
However, our analysis does not include enough data points
to investigate any association between internal design met-
rics and the proposed quality metric. Another restriction is
that the proposed metric is domain specific. In future work,
we plan to extend our analysis using additional implemen-
tations of the same system to test the consistency of the
results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Software quality, design metrics, case study, robotic soccer

1. INTRODUCTION
Software research and practice share a common goal, which
is to develop ways of achieving better, faster, and cheaper
software. However, “better” is a fuzzy term usually referring
to higher quality in software context, where quality is yet
another ambiguous term. Shepperd defines software quality
as a multi-faceted characteristic not only consisting of many
factors, but also perceived differently by distinct stakehold-
ers [22]. There are also different views on software quality
such as the quality of the processes and the traditional view
of product quality, which further branches to subclasses like
internal and external quality. Regardless of these issues,
software quality is often defined in terms of defects in the
system; a measure whose objectivity is also questionable.
Furthermore, defects are surrogate measures of quality [10],
whose absence indicate lack of problems rather than superi-
ority of one system over the other. Unfortunately, using sur-
rogate measures for software quality is somewhat unavoid-
able. Hamlet states [8]:

“...surrogate quality measures are needed, and they
must be validated against the real properties we
care about - actual quality - before they can be
used...”

In this sense, defects may only capture quality from the per-
spective of the stakeholder that develops the system, (i.e. re-
leasing a non-problematic product that is easy to maintain),
but they do not indicate much regarding the quality percep-
tion of end-users. Although defects certainly decrease the
quality of a product, their absence does not raise the qual-
ity bar above the baseline (e.g., defects can be an indicator
of failure at best).

So, what are the real properties that end-users care about?
A possible answer, which we use in this study, is the prop-



erties that capture a system’s ability to fulfill the purpose
that it is developed for. It is the basic right and assump-
tion of end-users not to have defects in the products they
use. Even in the existence of defects, most users learn to
live with them until they get fixed, given that the rest of
the system is still available and valuable for the end-users.
Considering the current wave of agile and particularly lean
philosophies for software development, the concept of value
creation is of highest importance and there is no better way
of creating value than providing exactly what the customer
needs. Therefore, actual quality hides in the way a system
does what it is intended to do. This perspective on quality is
of particular importance in cases where there exist alterna-
tives of readily-available software for the customer to choose
from. It also becomes important for business stakeholders
to reach their business goals in a competitive environment.

From the research perspective, there is an extensive body of
literature devoted to predicting quality (i.e. defects) using
product (i.e. complexity and OO metrics) and/or process
metrics (i.e. code churn). In other words, the validity of
such product and process metrics as indicators and predic-
tors of software quality as perceived by the stakeholder that
developed the system (i.e. in terms of defects) have been
shown. In this paper, we conduct a case study, where we
propose a domain specific metric for overall software quality
as perceived by the end-users (i.e. the extent to which a
system fulfills its purpose) and compare the designs of two
cases.

We believe that existing approaches to the quality puzzle
employing defect measures only show how not bad a system
is. We compare the designs of two software systems and
assess how good they are in terms of fulfilling the end-users’
expectations.

2. RELATED WORK
Product metrics have been extensively used in software qual-
ity research regarding their power for indicating and/or pre-
dicting quality, though the basic assumption is that quality
is associated with defects.

Fenton and Ohlson made an extensive analysis of defects
in two releases of a commercial product using product met-
rics [6] and report that most of the defects reside in a small
number of modules (i.e. Pareto principle [7]). They also
report that they have found no evidence regarding the rela-
tion between defects and the size/complexity of the modules
and they observe similar defect densities in the two versions.
Their study is replicated by Andersson and Runeson in order
to verify/refute Fenton and Ohlson’s findings in three prod-
ucts of a different domain [1]. Their replication confirmed
the results of Fenton and Ohlson. The same fault distribu-
tion has been observed by Ostrand, Weyuker, and Bell in
very large scale telecommunication projects from AT&T [3,
17, 16, 18]. Koru and Tian, in their analysis of two IBM
and four Nortel Networks products, also report that most
defect prone modules are not necessarily the ones with the
highest complexity measures [12]. On the other hand, Koru
and Liu’s further research on open source Mozilla project
strongly argues that smaller modules are more defect-prone
than larger modules [11]. Demonstrating the usefulness of
product metrics for predicting defects, Menzies et al. con-

structed high performance models on NASA MDP projects
[14]. Further, Turhan et al. showed the applicability of their
approach across different development sites [25].

Considering object oriented design metrics introduced by
Chidamber and Kemerer [4], different studies performed ex-
periments to validate their use [2, 24, 5, 21]. Subramanyam
and Krishnan found them useful cautioning that the predic-
tive power of these metrics vary in different programming
languages [24]. However, El Emam et al. argued that when
the effect of class size is also considered, only 4 of these met-
rics are related with defects and just two of them are useful
for building predictors [5].

Further, Jiang et al. compared the predictor performances
that are learned from design metrics, static code features,
and both on 13 NASA projects, concluding that combination
of these metrics are able to predict more accurately than
their individual use [9]. Same conclusion is also achieved by
Zhao et al. in their analysis of a real time telecommunication
system [26].

In summary, previous research investigates the association
between product metrics and defects with a focus on quality
from development point of view. On the other hand, we
investigate the end-users perspective of quality. In order to
avoid the variations in the perception of end-user quality, we
perform our case study in robotic soccer domain, where the
overall success can be quantitatively and objectively assessed
via the results of the soccer games.

2.1 Robotic Soccer
The idea of robot soccer was first mentioned by Alan Mack-
worth in his paper “On Seeing Robots” [13] in 1992. Around
the same time in United States, Manuela Veloso and her stu-
dent Peter Stone from Carnegie Mellon University had been
working on soccer playing robots and a separate group of
researchers from Japan were discussing on long term grand
challenge problems for robotics.

These discussions eventually led to further investigation of
soccer as a platform to foster science and technology, and a
robotic competition named the Robot J-League was launched
by Japanese researchers including Minoru Asada, Yasuo Ku-
niyoshi, and Hiroaki Kitano in 1993. The competition re-
ceived overly positive reactions from the researchers around
the world just within a month after its announcement and it
has been renamed to Robot World Cup Initiative, or shortly
“RoboCup”. Several demonstration games were played in
1994, 1995, and 1996 at the leading conferences of AI like
AAAI, JSAI, IROS, and IJCAI.

First RoboCup event was held in 1997 in Japan and since
then RoboCup has been the largest robotics event in the
world [19]. The ultimate goal of RoboCup was set as follows:

“By mid-21st century, a team of fully autonomous
humanoid robot soccer players shall win the soc-
cer game, comply with the official rule of the
FIFA, against the winner of the most recent World
Cup.”



3. CASE STUDY
3.1 Context
Currently, RoboCup employs different robot soccer cate-
gories addressing different research challenges. The RoboCup
Standard Platform League is one of them, in which rather
than building custom robots for playing soccer, each partic-
ipant has to use a standard, commercially available robotic
platform determined by the RoboCup Federation [19]:

“...In the league, all teams use identical (i.e. stan-
dard) robots. Therefore the teams concentrate
on software development only, while still using
state-of-the-art robots. The robots operate fully
autonomously, i.e. there is no external control,
neither by humans nor by computers...”

This constraint forces researchers to focus on software de-
velopment that can run real time on an embedded platform.
Therefore, it is a software challenge rather than a hardware
challenge.

From its establishment in 1998, until 2008, Sony Aibo robotic
dog was the standard platform. Since 2008, it’s been re-
placed by Nao humanoid robot manufactured by a French
company named Aldebaran Robotics [23]. Our case study
is performed on the robotic dogs. Sony AIBO ERS-7, a suc-
cessor model for ERS-210 used in previous RoboCup com-
petitions, is a robotic dog with 18 degrees of freedom, a
color camera, two infrared distance sensors, and a 3-axis ac-
celerometer. It has a MIPS 6000 processor running at 576
MHz. It runs a custom real-time operating system named
APERIOS, also developed by Sony. Figure 3.1 shows both
ERS series robotic dogs.

(a) (b)

Figure 1: Standard platforms for 2005 competitions:
a) Sony AIBO ERS-7 b) AIBO ERS-210.

3.1.1 Main Software Components
Although the software systems of the competing teams dif-
fer in terms of the implemented algorithms and the architec-
tural design, most of them consists of five major components
that are developed in C++ using provided API’s:

• Vision: Vision component is responsible for perceiv-
ing the environment and recognizing the important ob-
jects (e.g., goals, robots, landmarks, the ball, the field,
etc.) and their relative positions with respect to the

robot using the color camera mounted on the head of
the AIBO. The objects on the field are color coded
(i.e., the goals are yellow and blue, the landmarks
are yellow-blue and blue-yellow, the field is green with
white lines, the ball is orange, and the robots on the
teams wear red and blue jerseys). The camera of the
AIBO provides 30 images per second and it is of cru-
cial importance to develop a vision system that can
recognize the objects using their color and shape, and
compute their relative bearings and distances to the
robot at the full frame rate.

• Self Localization: In order to decide on which action
to perform, the robot should have the information of its
whereabouts on the field. The self localization compo-
nent is responsible for inferring the robot’s position on
the field using the visual information (i.e., bearings and
distances of the perceived landmarks on the field) and
the proprioceptive sensing of the robot’s displacement
reported by the locomotion component. There are var-
ious methods for localization including geometry-based
methods (e.g., triangulation) and probabilistic mod-
eling (Monte Carlo localization, Markov localization,
and Kalman filter based approaches).

• Locomotion: The locomotion module is responsible
for generating walk and kick motions which are essen-
tial to play soccer. It converts the high level command
received from the planning and behaviors component
into a series of joint angles to be set at each execution
cycle. Most teams use different implementations of in-
verse kinematics based omnidirectional walking meth-
ods.

• Communication: AIBOs are equipped with wireless
ethernet cards which allow them to connect to a stan-
dard IEEE 802.11a/b wireless network. The robots
of the same team utilize this wireless connection abil-
ity to exchange both the perceived world information
(i.e., the positions of the ball, the robot itself, and the
other perceived objects), and the planning and behav-
ior related messages, especially for assigning different
behaviors to different robots to prevent more than one
robot from rushing to the ball at the same time.

• Planning and Behaviors: Planning and Behavior
component is where the “intelligence” of the whole sys-
tem lies in. It is responsible for deciding which action
to take based on the perceived environment, the in-
ternal state of the robot, and the exchanged informa-
tion with the teammates through the communication
component. The decided action (e.g., walking towards
a direction at a certain speed, performing a kick, or
looking at a point) is then passed to the locomotion
module.

3.1.2 Team Descriptions
The first case team, which we refer to as Team A in the
rest of this paper, is the GermanTeam. GermanTeam is a
joint effort of four German universities, namely Humboldt-
Universität zu Berlin, Universität Bremen, Technische Uni-
versität Darmstadt, and Universität Dortmund. A total of
four faculty members, 8 PhD students, and 43 undergrad
students have contributed to the team in 2005 competitions



Table 1: Hypotheses. (TA: Team A, TB: Team B,
lcom: lack of cohesion in methods, rfc: response for
a class, wmc: weighted methods per class, cbo: cou-
pling between objects, noc: number of children, dit:
depth of inheritance tree).

metric H0 HA

cc CCTA = CCTB CCTA 6= CCTB

lcom LCOMTA = LCOMTB LCOMTA 6= LCOMTB

rfc RFCTA = RFCTB RFCTA 6= RFCTB

wmc WMCTA = WMCTB WMCTA 6= WMCTB

cbo CBOTA = CBOTB CBOTA 6= CBOTB

noc NOCTA = NOCTB NOCTA 6= NOCTB

dit DITTA = DITTB DITTA 6= DITTB

perf PERFTA = PERFTB PERFTA 6= PERFTB

[20]. The GermanTeam has been able to achieve a consis-
tently high performance since their first competition in 2001
and their code base has been adopted by nearly half of the
teams in the league since then.

The second case team, which we refer to as Team B, is
TWaves. Twaves is the RoboCup SPL team of Tokai Uni-
versity, Japan. The team consists of two faculty members,
two technicians, and seven students. TWaves uses their own
code base written from scratch. Started their development
in mid-2004, TWaves is a relatively inexperienced team com-
pared to the GermanTeam.

3.1.3 Tournament Structure
A total of 24 teams compete in the RoboCup SPL. The
tournament starts with a round robin of 8 groups with three
teams in each group. The teams ranked first directly proceed
to the second round robin games, while the second and the
third place teams play against the opposite team of the next
group (i.e., the second place team of the first group plays
against the third place of the second group, the second place
of the second group plays against the third place of the first
group and so forth). The second round robin consists of
four groups with four teams in each group. The first and
the second place of the groups proceed to the quarterfinals
where the first and the second place teams of groups 1 and
2 play against the second and the first place teams of groups
4 and 3, respectively. In the semifinals, the winners of the
first and the fourth, and the second and the third teams play
against each other, and the eventual winners of the semifinal
games meet at the final game.

3.2 Hypotheses and Analysis Methods
In order to compare the two implementations of the same
robotic soccer system, we use the cases in our analysis as the
independent variable (i.e., Team A vs. Team B), the code
artifacts as the dependent variables (specifically cyclomatic
complexity and CK metrics as the design measures), and the
performances of the teams as their quality indicators. We
postulated eight hypotheses corresponding to each depen-
dent variable. Table 1 shows a list of these hypotheses. For
each hypothesis, the corresponding null and the alternative
hypotheses are:

H0 : There is no difference between the two systems.
HA : There is a difference between the two systems.

Before applying statistical tests for hypothesis testing, we
checked for normality in each distribution. We observed
that none of the metrics are normally distributed in either
groups. Therefore, we used a non-parametric test, i.e., 2-
tailed Mann-Whitney U Test, to check for statistical differ-
ences. In all tests we use the significance level α = 0.05. All
analyses are performed in Matlab R2007a.

3.3 Data Collection
In order to differentiate the overall quality of the two sys-
tems, we used their robotic soccer competition performances
at the RoboCup Standard Platform League in 2005. Among
the 24 competing software, Team A won the competition af-
ter playing a total of eight matches, with an average of more
than four goals scored per game and less than one goal re-
ceived. On the other hand Team B was eliminated at the
intermediate round after 3 matches, with an average of more
than three goals received per game and less than one goal
scored. While Team A won seven out of eight games, Team
B lost all three games. Although we focus on only a single
tournament for determining the software that is better in
terms of the outcomes, a longitudinal view on both teams
also reveal the same pattern: Team A has been consistently
successful in the tournament over the years, while Team B
usually performed below the average.

Our proposed metric for capturing quality is an obvious one
for the robotic soccer domain: the average difference be-
tween the goals scored and goals conceded per game. Clearly,
this metric favors wins over losses and it does not penalize
the draws. Furthermore, this metric also favors wins with
larger deltas. Since the number of games played by the
teams may not be equal, we normalize the quality metric by
the total number of games played. The quality metric for a
team TX, indicated by perfTX , is formalized in Equation
1:

perfTX =
1

n

n∑
i=1

gsi − gci (1)

where n is the total number of games played by team TX,
gsi is the goals scores in game i, and gci is the goals con-
ceded in game i. Please note that Equation 1 yields a single
number for the overall quality of a team, and to obtain the
data points we used in hypothesis testing we used the same
equation without the summation term to come up with a
sample population of match performances. A summary of
team performances in the tournament is given in Table 2.

The source codes for some of the competing teams in the
tournament are publicly available through their web sites.
For our analysis, we use the two teams’ codes with observ-
able differences in their performances as described earlier.
From the codes of the teams, we excluded the codes that do
not run on the robots, i.e., helper applications for debugging,
simulation, etc. We used a static analyzer tool (Predictive
3) for automated data collection from their public source
codes. The descriptive statistics of the collected data are



Table 2: Performances of the two teams.
metric TA TB
Standing (in 24) 1st 16th-24th
Avg. goals scored >4 <1
Avg. goals conceded <1 >3
Wins/draws/loses 7/1/0 0/1/2
Overall performance score 3.25 -3.00

Table 3: Descriptive statistics.
metric #data median min max

TA TB TA TB TA TB TA TB
cc 534 31 8 45 0 0 883 1228

lcom 534 31 3 9 0 1 83 52
rfc 534 31 7 20 0 0 133 81

wmc 534 31 3 18 0 0 70 56
cbo 534 31 1 0 0 0 31 9
noc 534 31 0 0 0 0 24 0
dit 534 31 0 0 0 0 3 0
perf 8 3 4 -3 0 -6 5 0

provided in Table 3.

4. RESULTS
In this section, we present the results of the hypothesis tests
and discuss their implications regarding the implementa-
tions of the two teams. Please note that our hypothesis are
2-tailed and a rejection only indicates a difference between
the two implementations. While presenting the results, we
refer to the medians to comment on the direction of the
differences. A summary of the results is provided in Table
4.

CC: As a general design principle simplicity is preferred
over complexity. Cyclomatic complexity is the number of
possible program execution pathways and values above 10
are not recommended. Higher values indicate complex de-
signs that are difficult to understand and maintain. The test
for the null hypothesis H0 : CCTA = CCTB using Table 3
data yields a p-value less than 0.001 and we reject the null
hypothesis, in favor of Team A. Therefore, Team A’s imple-
mentation has better design characteristics than Team B’s,
in terms of cyclomatic complexity. One interesting observa-
tion is that even though Team A has a code base nine times
larger than Team B, their class structures are simpler, which
indicates that complexity due to more lines of code may be
avoided by good designs.

LCOM: Cohesiveness is a desirable design attribute that
enables encapsulation. Therefore, low LCOM (i.e., lack of
cohesion in methods) values indicate better designs whereas
higher values suggest the need for splitting the class into sub-
classes [4]. The test for the null hypothesisH0 : LCOMTA =
LCOMTB using Table 3 data yields a p-value less than
0.001 and we reject the null hypothesis in favor of Team
A. Therefore, Team A’s implementation has a better design
than Team B’s, in terms of cohesiveness.

RFC: RFC counts the number of possible methods that can
be executed in response to a message received by an instance
of that class. Lower values are desired, since higher values in-
dicate increased communication complexity between classes
[4]. The test for the null hypothesis H0 : RFCTA = RFCTB

using Table 3 data yields a p-value less than 0.001 and we
reject the null hypothesis in favor of Team A. Therefore,
Team A’s implementation has better characteristics than
Team B’s, in terms of the communication complexity be-
tween classes.

WMC: WMC captures the total complexity of methods de-
fined in a class. Higher values indicate increased complex-
ity, application specific implementation with low chances of
reuse [4]. The test for the null hypothesis H0 : WMCTA =
WMCTB using Table 3 data yields a p-value less than 0.001
and we reject the null hypothesis in favor of Team A. There-
fore, Team A’s implementation has different characteristics
than Team B’s, in terms of the inner complexity of classes.

CBO: Coupling of two classes occur when one class uses
the methods of the other. CBO is the number of classes,
to which a class is coupled to. Higher coupling clearly in-
creases inter-object complexity and maintenance effort and
is against modular design principles [4]. The test for the
null hypothesis H0 : CBOTA = CBOTB using Table 3 data
yields a p-value of 0.0115 and we reject the null hypothesis.
In this case, the direction is opposite to the common pat-
tern, i.e., in favor of Team B. However, Team A’s coupling
scores are not too high (i.e., median value of 1) to conclude a
relatively worse design. The lower values observed in Team
B’s code are probably due to their design that implements
most functionality within single large classes that do not
communicate with others.

NOC: NOC is the count of immediate sub-classes that in-
herit a class. While high-values suggest reuse through inheri-
tance, it also increases the likelihood of improper abstraction
and misuse of inheritance [4]. The test for the null hypoth-
esis H0 : NOCTA = NOCTB using Table 3 data yields a
p-value of 0.0929 and we fail to reject the null hypothesis.
Therefore, Team A’s implementation is no different than
Team B’s, in terms of the immediate use of inheritance. On
the other hand, it is clear that Team B has not used in-
heritance at all (i.e., min and max values are 0), and the
insignificant difference suggests a limited use of inheritance
in Team A.

DIT: DIT denotes the level of the class in the inheritance
structure. High values indicate a class being deeper in the
inheritance tree and are not desirable since they indicate
more design complexity due to increased number of inherited
methods [4]. The test for the null hypothesis H0 : DITTA =
DITTB using Table 3 data yields a p-value of 0.0188 and we
reject the null hypothesis. Therefore, Team A’s implemen-
tation has different characteristics than Team B’s, in terms
of the inheritance structure. Yet again, it is evident that
Team B has not used inheritance at all and Team A has a
maximum value of 3. This suggests that Team A has better
utilized inheritance.

PERF: PERF scores are calculated as described in Section
3.3. Higher values indicate better performances in terms of



Table 4: Results
H0 Reject Direction p-value
cc yes TA < TB <0.001
lcom yes TA < TB < 0.001
rfc yes TA < TB < 0.001
wmc yes TA < TB < 0.001
cbo yes TA > TB 0.0115
noc no TA = TB 0.0929
dit yes TA > TB 0.0188
perf yes TA > TB 0.0189

goals scored and conceded. The test for the null hypothesis
H0 : PERFTA = PERFTB using Table 3 data yields a p-
value of 0.0189 and we reject the null hypothesis. Therefore,
Team A’s implementation is better than Team B’s, in terms
of the performance scores.

4.1 Limitations
One possible factor affecting the outcomes is the individ-
ual programming skills, experience and the ability to per-
form team work. The impact of cultural issues for software
development is also applicable. Nevertheless, both imple-
mentations are done by a mixed team of graduate and un-
dergraduate students led by one or more senior researchers,
and we assume that the overall level of the individuals were
equivalent in this sense. In terms of the number of total
team members, Team A is five times larger than Team B.
While this suggests the availability of more effort and re-
sources for Team A, it also means increased communication
and management complexity. Further, Team A carried out
multi-site development whereas Team B members were col-
located. Therefore, the size of Team A may also be consid-
ered as a disadvantage. Indeed, this may be the reason that
Team A’s code base is nine times larger (i.e., 90, 000+ vs.
10.000+).

Both teams have passed certain qualification criteria, which
are set and evaluated by a technical committee, in order to
participate in the tournament like all 24 teams. Each year
at least 30+ teams throughout the world apply for partici-
pating in the RoboCup Standard Platform League, and only
24 of them are selected by this committee. Each candidate
team records a gameplay video showing the team’s abilities
for achieving qualification criteria and shares it with the
technical committee. Therefore, both teams fulfill a base-
line quality criteria and are comparable in this sense.

We have used a single tournament’s results for differentiating
between the quality of two systems. It can be argued that
these game results may be due to factors related to chance.
Nevertheless, a real-time, dynamic, and non-deterministic
environment is an inherent property of the domain that these
software are developed for; therefore, these facts should be
accounted for in the design. Furthermore, the consistent
short term (i.e., within tournament) and long term (i.e.,
across different tournaments) performances of both teams
suggest that the risk of achieving these results by chance is
minimum. Similarly, choice or development of certain al-
gorithms for accomplishing the mostly AI-based tasks may
directly affect the outcomes; however, we have no control

over such critical design decisions.

While it is obvious for the robotic soccer domain, it may be
a challenge for other domains to replace the quality measure
to quantitatively reflect the end-user perspective. Therefore,
our results are valid within the context of the case study that
is described in earlier sections.

Furthermore, the number of data points in our analysis is too
few to derive general conclusions. For evaluating commercial
software, qualitative research methods may be more appro-
priate to capture end-user opinions or user experiences. The
number of downloads or the size of the community may be
an indicator of success for the system in fulfilling its pur-
pose. However, these are surrogate measures that can easily
be affected by other factors such as marketing strategies,
regulations, and false recommendations through social net-
works.

5. CONCLUSIONS
We performed a comparative case study using two differ-
ent implementations of a real-time, embedded software that
competed in a robotic soccer tournament. In order to com-
pare the quality of the two cases from an end-user point of
view, we derived a metric from match scores rather than us-
ing defect counts. We found that the team that has achieved
a significantly higher performance in the tournament also
has significantly better design charateristics in terms of within
and between class complexities, cohesiveness, and the use of
inheritance.

The basic idea behind our analysis is that the perception of
quality varies among different stakeholders. Using defects
as a quality measure for the stakeholders who undertake the
project is reasonable. However, it has no value for capturing
end-users perception for quality above the baseline.

Though we evaluated cases with pure research goals and no
commercial interests, we believe that the basic idea is appli-
cable and could be customized for other business contexts.
Furthermore, predictive models, which are tuned to end-user
point of quality (similar to the models proposed by Menzies
et al. that can be tuned for different business goals [15]),
may be constructed if an association is detected between
software artifacts and the quality outcome.

Our analysis currently do not have enough data points to in-
vestigate an association in the robotic soccer domain. How-
ever, most source codes and tournament results over the
years are public and as future work, we plan to extend this
analysis using those data. We believe that robotic soccer
domain is a data rich and special environment for the com-
munity to examine.

6. ACKNOWLEDGMENTS
This research is partially supported in Finland by Tekes un-
der Cloud-SW project, and in Turkey by Tubitak.

7. REFERENCES
[1] C. Andersson and P. Runeson. A replicated

quantitative analysis of fault distributions in complex
software systems. Software Engineering, IEEE
Transactions on, 33(5):273–286, 2007.



[2] V. Basili, L. Briand, and W. Melo. A validation of
object-oriented design metrics as quality indicators.
Software Engineering, IEEE Transactions on,
22(10):751 – 761, Oct 1996.

[3] R. Bell, T. Ostrand, and E. Weyuker. Looking for
bugs in all the right places. ISSTA ’06: Proceedings of
the 2006 international symposium on Software testing
and analysis, Jul 2006.

[4] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. Software Engineering, IEEE
Transactions on, 20(6):476 – 493, Jun 1994.

[5] K. E. Emam, S. Benlarbi, N. Goel, and S. Rai. A
validation of object-oriented metrics. National
Research Council of Canada, Jan 1999.

[6] N. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system.
Software Engineering, IEEE Transactions on,
26(8):797–814, 2000.

[7] N. E. Fenton and M. Neil. A critique of software
defect prediction models. IEEE Transactions on
Software Engineering, 25(5):675–689, 1999. Available
from http://citeseer.nj.nec.com/fenton99critique.html.

[8] D. Hamlet. An essay on software testing for quality
assurance - editor’s introduction. Annals of Software
Engineering, pages 1–9, 1997.

[9] Y. Jiang, B. Cuki, T. Menzies, and N. Bartlow.
Comparing design and code metrics for software
quality prediction. PROMISE ’08: Proceedings of the
4th international workshop on Predictor models in
software engineering, May 2008.

[10] B. Kitchenham. Performing systematic reviews. Keele
University Technical Report TR/SE0401, 2004.

[11] A. G. Koru and H. Liu. Identifying and characterizing
change-prone classes in two large-scale open-source
products. JSS, Jan 2007.

[12] A. G. Koru and J. Tian. An empirical comparison and
characterization of high defect and high complexity
modules. JSS, Jan 2003.

[13] A. K. Mackworth. On seeing robots. In Computer
Vision: Systems, Theory, and Applications, pages
1–13. World Scientific Press, 1992.

[14] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 2007.

[15] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang,
and A. Bener. Defect prediction from static code
features: Current results, limitations, new approaches.
Automated Software Engineering Journal, 2010.

[16] T. Ostrand and E. Weyuker. The distribution of faults
in a large industrial software system. ISSTA ’02:
Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, Jul 2002.

[17] T. Ostrand, E. Weyuker, and R. Bell. Where the bugs
are. ISSTA ’04: Proceedings of the 2004 ACM
SIGSOFT international symposium on Software
testing and analysis, Jul 2004.

[18] T. Ostrand, E. Weyuker, and R. Bell. Automating
algorithms for the identification of fault-prone files.
ISSTA ’07: Proceedings of the 2007 international
symposium on Software testing and analysis, Jul 2007.

[19] Robocup. www.robocup.org/.

[20] T. Röfer, T. Laue, M. Weber, H.-D. Burkhard,
M. Jüngel, D. Göhring, J. Hoffmann, B. Altmeyer,
T. Krause, M. Spranger, O. von Stryk, R. Brunn,
M. Dassler, M. Kunz, T. Oberlies, M. Risler,
U. Schwiegelshohn, M. Hebbel, W. Nisticó,
S. Czarnetzki, T. Kerkhof, M. Meyer, C. Rohde,
B. Schmitz, M. Wachter, T. Wegner, and C. Zarges.
Germanteam 2005 team report. Technical report,
University of Bremen, University of Humboldt,
Technical University of Darmstadt, and Dortmund
University, Germany, 2005.
http://www.germanteam.org/GT2005.pdf.

[21] A. Schröter, T. Zimmermann, and A. Zeller.
Predicting component failures at design time. ISESE
’06: Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, Sep
2006.

[22] M. Shepperd. Foundations of software measurement.
Prentice Hall International (UK) Ltd., Hertfordshire,
UK, UK, 1995.

[23] SPL. Robocup standard platform league
www.tzi.de/spl/.

[24] R. Subramanyan and M. Krishnan. Empirical analysis
of ck metrics for object-oriented design complexity:
Implications for software defects. IEEE Trans.
Software Eng, pages 297–310, 2003.

[25] B. Turhan, T. Menzies, A. Bener, and J. DiStefano.
On the relative value of cross-company and
within-company data for defect prediction. Empirical
Software Engineering, pages 540–578, 2009.

[26] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie. A
comparison between software design and code metrics
for the prediction of software fault content.
Information and Software Technology, Jan 1998.


