
An Interactive Approach for Situated Task Teaching through Verbal Instructions

Çetin Meriçli, Steven D. Klee, Jack Paparian, and Manuela Veloso
{cetin,veloso}@cmu.edu, {sdklee,jpaparia}@andrew.cmu.edu

Computer Science Department
Carnegie Mellon University

Abstract

The ability to specify a task without having to write special
software is an important and prominent feature for a mo-
bile service robot deployed in a crowded office environment,
working around and interacting with people. In this paper,
we contribute an interactive approach for enabling the users
to teach tasks to a mobile service robot through verbal com-
mands. The input is given as typed or spoken instructions,
which are then mapped to the available sensing and actuation
primitives on the robot. The main contributions of this work
are the addition of conditionals on sensory information that
the specified actions to be executed in a closed-loop manner,
and a correction mode that allows an existing task to be mod-
ified or corrected at a later time by providing a replacement
action during the test execution. We describe all the compo-
nents of the system along with the implementation details and
illustrative examples in depth. We also discuss the extensi-
bility of the presented system, and point out potential future
extensions.

Introduction
Interacting with humans and responding to their instructions
in the environment through natural language are very impor-
tant features for service robots. Though the robot is equipped
with some task knowledge, it would be very useful—if not
necessary—to also have the ability to teach new tasks to the
robot easily, and preferably without having to modify the
robot control software. Also, being able to teach new tasks
through natural language instructions is a very desired ca-
pability as verbal communication is the primary method of
information exchange among humans.

There are, however, various challenges in instructing
robots using natural language such as robust speech recog-
nition in case of spoken interaction, dealing with the ambi-
guity in given instructions stemming from the flexibility of
natural language, and properly mapping given commands to
robot behavior primitives that can be executed by the robot.

We contribute an approach for enabling users to teach the
steps needed to perform a task to a mobile service robot
in terms of available sensing and actuation primitives. Our
approach consists of a natural language input module (ei-
ther through speech or by typing), a parser that processes

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the raw language instructions and converts them to a graph-
based representation, and an execution module that takes the
generated behavior representation and executes the task. Our
language supports conditionals and loop structures based on
sensing different landmarks in the environment. Main con-
tributions of this paper are:
• A task specification language using the available sensing

and actuation capabilities of a service robot that also sup-
ports loop structures and conditionals based on sensing.

• A keyword based filtering approach to the natural lan-
guage input that makes the system robust to different ex-
pressions of the same command to some extent as long as
the proper keywords are used in correct order.

• A correction feature that allows the teacher to modify
parts of an existing task as desired.
In the remainder of the paper, we first give a brief

overview of related work in the literature and how our ap-
proach differs. We then describe all the components of the
contributed approach thoroughly. After presenting imple-
mentation details on a real robot as well as a set of illustra-
tive examples of task teaching and correction, we conclude
the paper with a discussion of the approach as well as com-
menting on possible future work.

Related Work
Natural language based interaction with robots has been ex-
amined in various different scenarios ranging from com-
manding robotic forklifts to teaching robots how to give a
tour. Recently, approaches that leverage probabilistic models
trained on a labelled corpus have been proposed to deal with
the uncertainty in the unrestricted natural language instruc-
tions. In (Kollar et al. 2010), a system using Spatial Descrip-
tion Clauses (SDC) is proposed for parsing a spoken natural
language command and extracting the spatial information.
The extracted spatial commands are then grounded to the
available actions that can be executed by the robot. The pro-
posed system is evaluated in a navigation scenario. (Tellex
et al. 2011) presents Generalized Grounding Graphs (G3)
for parsing commands given through speech using natural
language. A Conditional Random Field (CRF) is trained on
a manually labelled corpus and then used to infer the most
likely G3 representation for a given natural language com-
mand. They applied their method to robotic navigation and



manipulation domains. Similarly, a system that uses a parser
that learns through statistical machine translation methods
is presented in (Matuszek, Fox, and Koscher 2010) for en-
abling a robot to follow navigation instructions. In (Chuang-
suwanich et al. 2010), a speech-based robot operation sys-
tem is proposed for handling cargo in an outdoor scenario
by a robotic forklift. Contrary to the probabilistic approaches
discussed above, this approach is not robust against flexible
natural language commands. Instead, the proposed system
expects commands to be given according to the specified
syntax. Another approach for verbal instruction is presented
in (MacMahon, Stankiewicz, and Kuipers 2006). Similar to
the works discussed above, they also use a parser to convert
the given natural language command into an action represen-
tation. If an unknown word is encountered in the command,
the system first tries to find a similar word with a known
concept using WordNet. If no such words can be found, that
part of the command is ignored. Ignoring an unknown and
unexpected part of the command bears resemblance to our
approach for dealing with ambiguity, but our approach delib-
erately checks for the known commands instead of trying to
parse the entire instruction. An approach for updating plans
generated by a planner using natural language instructions
given through speech is introduced in (Cantrell et al. 2012).
A multi-modal spatial language system that utilizes gestures
along with the verbal instruction is presented in (Skubic et
al. 2004). The parser of the system relies on well-defined
grammar, and the extracted lexical items are then mapped
on the robot primitives. The main difference between our
approach and these aforementioned works is that the other
approaches do not allow robots to learn from the provided
instructions, as the instructions are merely used to operate
the robot without saving them for future use.

Teaching tasks to a robot through verbal instruction has
also been studied in various domains. Rybski et al. intro-
duced a method for teaching tasks composed of available
action primitives for a service robot using spoken verbal in-
structions (Rybski et al. 2008). Their approach does not per-
form any disambiguation on the received verbal command
converted to text via a speech recognition module; therefore,
their system mandates a strict syntax for the commands. As
a part of the teaching process, the robot can also learn navi-
gation trajectories by following the demonstrator. The main
difference between our approach and this work is that our
algorithm allows repetitions (cycles) in the task representa-
tion and enables the user to modify and correct an existing
task. In (Dzifcak et al. 2009), a system that translates given
natural language instructions into formal logic goal descrip-
tion and action languages is presented. The parsing of in-
structions is done through the use of predefined associations
between the lexical items in the instructions and the corre-
sponding λ-expressions.

A system for instructing the robot how to navigate is pre-
sented in (Lauria et al. 2001). The proposed system maps
the received instruction to the defined action primitives. An
interesting aspect of this work is that these action primitives
are extracted from a corpus collected from several subjects.
In (Nicolescu and Mataric 2003), a method for learning rep-
resentations of high level tasks is proposed. Their approach

allows learning a task composed of non-repetitive sequences
of predefined robot primitives; in addition, it supports revi-
sions of the taught task and generalizations of task represen-
tations over multiple demonstrations of the same task. Al-
though mapping the instruction to action primitives in these
two studies resembles our approach, our language differs
as our primitives are parameterized and our instruction lan-
guage also contains conditionals. Teaching soccer skills via
spoken language is addressed in (Weitzenfeld, Ejnioui, and
Dominey 2010). In their approach, there is a predetermined
set of actions and natural language commands that maps on
those actions. An interesting aspect in their proposed frame-
work is that it allows the teacher to query the robot for ac-
cessing its internal state. Their vocabulary includes a set of
actions like shoot and pass, and if-then-else control expres-
sions that can be coupled with queries about the state fea-
tures. Among the main differences with this work and our
approach is the ability of our system to execute the task step
by step to enable verification of the taught task as well as
modifying and correcting the taught actions.

Approach
The task teaching takes place in three consecutive operations
in our system:
• Processing verbal instruction
• Generating task representation
• Execution and correction

In this section, we review all components of our system in
detail.

Instruction Graphs for Task Representation
We represent tasks as a composition of available robot prim-
itives using a special graph structure called an Instruction
Graph (IG). An IG consists of a tuple G = 〈V,E〉 formed
from n instructions, where V = {vi | ∀ i ∈ [0, n]}, and vi
corresponds to the ith command given to the robot ranging
from 1 to n. The starting node of G is denoted with v0. E is
a set of tuples 〈vi, vj〉 representing a directed edge from vi
to vj . An edge between two vertices denotes a possible tran-
sition from one command to the other. A vertex is a 3-tuple
of the form v=〈ID,ActionType,Action〉. Each vertex is
given an identification number that also specifies their rela-
tive order in execution so that ∀ vi ∈ V , ID= i.

The ActionType field describes the type of each vertex
whereas the Action field tells the interpreter which actions
and sensing are necessary. There are four defined action
types that a vertex can have:

• Do: A vertex is designated with the Do action type if it
performs an action completely in open loop.

• DoUntil: As opposed to the Do action type, DoUntil
refers to an action that has a sensory component.

• Conditional: This action type refers to a vertex with more
than one outgoing edge, representing a fork in the flow of
execution. The Action element stores the specific condi-
tion evaluated to determine which branch of execution to
follow at runtime.



Action Type Keyword(s)
Do No Keyword

DoUntil “until”

Conditional
“if”,“while”,“do while”,“end if”,
“end while”

Table 1: Action types and corresponding keywords.

Action Type Action Keyword
Do move forward “forward”
Do turn the robot “turn”
Do speak to the user “say”

DoUntil move forward in closed-loop “forward”
DoUntil turn in closed-loop “turn”

Table 2: Defined actuation commands and corresponding
keywords.

• GoTo: This action type is used internally to implement
loop structures. The Action field contains the ID of the
vertex that the interpreter will jump to. GoTo vertices are
never created directly by the user.

Our language also has three special commands without
specified action types as they are not used in the tasks:

• Save: This command saves the current task in memory to
a file under a specified name.

• Load: This command loads a previously saved task into
the memory and appends it to the current node in the exe-
cution flow. The details of how the load command works
are discussed in the next subsection.

• Shutdown: This command terminates the task execution.

Generating Instruction Graphs from User Input
When processing the given instruction to create the instruc-
tion graph, we search for specific keywords in the user in-
put to determine what type of command has been requested.
Once we infer the action type and the action, we make cer-
tain assumptions about the input form such as the existence
and order of the expected keywords. Also, we filter out any
unknown words in the input, therefore, a command can still
be successfully parsed even if it is expressed differently as
long as the keywords are correctly used and are in order.
After extracting the action type, action name, and corre-
sponding parameters (if any), a new vertex and new edge
are added to the current task instruction graph G. Teaching
a task is an interactive process as the robot asks for confir-
mation for each inferred action. After each confirmation, a
relevant node is created and added to the current IG. Table 1
and Table 2 shows the supported action types and actuation
commands, respectively.

As opposed to the Do and DoUntil action types which are
single-step commands, While and DoWhile commands cre-
ate loops over a group of nodes that can also contain nested
loops. Therefore, the generation of such conditional nodes
differ from the actuation nodes. For a conditional node, a

Conditional vertex with two children is created. For an If
node, the execution continues with the first child vertex if
the specified condition evaluates to true, and the execution
continues from the second otherwise.

For the loops, an additional GoTo node is created. The
difference between the While and DoWhile constructs is
whether to evaluate the loop condition at the beginning or
end of the loop. In the case of a While loop, the Conditional
node is inserted at the beginning. A GoTo node is placed
at the end of the loop and points back to the Conditional
node. The body of the loop consists of everything added to
the graph between these two nodes. In case of a DoWhile
loop, the Conditional node is placed at the end of the body.
When the condition evaluates to true, the Conditional node
transitions to a GoTo node, which jumps to the first node in
the body of the loop. This loop implementation guarantees
at least one full execution of the loop body.

Algorithm 1 and Algorithm 2 show the algorithms for
the creation of actuation and conditional nodes, respectively.
The flow of execution through actuation nodes is straight-
forward; however, closing conditional statements requires
knowledge of their starting location. To accomplish this, we
utilize a stack to store a record of conditionals in the order
they were entered. When the body of a conditional is closed,
an element is popped off the stack. This element references
the starting location of the conditional to be closed.

Algorithm 1 Creating a Node for Actuation Commands.
1: function addActuation(vcurrent,id,instruction)
2: if checkKeyword(instruction,“forward”) then
3: action← “Move′′

4: else if checkKeyword(instruction,“turn”) then
5: action← “Turn′′

6: else if checkKeyword(instruction,“say”) then
7: action← “Say′′

8: end if
9: if checkKeyword(instruction,“until”) then

10: actionType← “DoUntil′′

11: else
12: actionType← “Do′′

13: end if
14: params← parseInformation(actionType, action)
15: id← id+ 1
16: v = createNode(id, actionType, action, params)
17: vcurrent.children[0]← v
18: vcurrent ← v

Saving and Loading Tasks
Once the teaching is completed, the resulting instruction
graph in the memory can be saved to a file for future use
by using the Save command along with a file name to save
the task to.

A previously saved task can be loaded into memory with
the Load command. The Load command works as follows.
Given that the user is creating an instruction graph G =
(Vg, Eg) with n inputs, we denote the most recently created
node as vgn . The Load command loads another instruction



graph H = (Vh, Eh) from the specified file. With the newly
loaded task at hand, a new instruction graph is formed as
(Vh ∪ Vg, Eh ∪ Eg ∪ {(v, vh0

)}). In other words, the re-
sulting graph is the union of G and H with one additional
edge connected the most recently created vertex of G to the
source-vertex of H . Leveraging this capability, a library of
subtasks can be created and used to compose new tasks.

Algorithm 2 Creating Branches and Cycles in the Flow of
Execution

1: function beginConditional(stack,vcurrent,id,condition)
2: actionType← checkActionType(condition)
3: v ← createNode(id, actionType, condition)
4: stack.push(v)
5: vcurrent.child[0] = v
6: vcurrent = v
7: id = id+ 1
8:
9: function endConditional(stack,vcurrent,id)

10: vconditional ← stack.pop()
11: vconditional.child[1]← vcurrent
12: if vconditional.actionType == “While” then
13: v ← createNode(id, “GoTo”, vconditional.ID)
14: vcurrent.child[0]← v
15: vcurrent ← v
16: id← id+ 1
17: end if

Executing Tasks
Execution of a task in the form of an instruction graph is a
traversal operation that starts from the first node (v0), and
follows defined transitions. The Do and DoUntil nodes have
only one directed edge outward. This edge is followed once
the action is performed, and the execution continues with the
next node. Conditionals have two directed outward edges.
Their Action field is a conditional statement that evaluates to
true or false at runtime. If the condition evaluates to true, the
first child of the node is set as the next node to be executed.
If the condition evaluates to false, the second child of the
vertex is chosen. The algorithm for executing an instruction
graph is given in Algorithm 3.

We have three main robot primitives that the given in-
structions are mapped to. The Move primitive is used
to execute motion. The supported motion types of mov-
ing forward and turning are specified by the tuple m =
〈∆x,∆y,∆Θ, vt, vr〉, where ∆x, ∆y represent the forward
and lateral displacement, respectively, and ∆Θ represents
the amount of rotation. vt and vr represent the maximum
translational and rotational velocities respectively. All trans-
lational motion is specified in meters, and all rotational mo-
tion in radians. The Say primitive allows the robot to speak
a given text message. Finally, the Sensing primitive makes
use of the available sensory information on the robot.

Modifying and Correcting Tasks
A major feature of our approach is the ability to let the
teacher correct parts of the task as desired. This can vary

Algorithm 3 Executing a task.
1: G← loadTask()
2: vcurrent = G.vertices[0]
3: while vcurrent 6= ∅ do
4: if vcurrent.actionType == “Do′′ then
5: executeAction(vcurrent.action)
6: vcurrent ← vcurrent.children[0]
7: else if vcurrent.actionType == “DoUntil′′ then
8: while vcurrent.senseCondition is not true do
9: executeAction(vcurrent.action)

10: vcurrent ← vcurrent.children[0]
11: end while
12: else if vcurrent.actionType == “GoTo′′ then
13: vcurrent ← vcurrent.children[0]
14: else if vcurrent.actionType == “Conditional′′

then
15: if evaluateConditional(vcurrent.action) then
16: vcurrent ← vcurrent.children[0]
17: else
18: vcurrent ← vcurrent.children[1]
19: end if
20: end if
21: end while

from editing the parameters of a node to replacing the node
with a new one. We envision three major reasons why a user
may want to correct a portion of a learned task:
• Changing open loop parameters to make instructions

more accurate
• Switching from open loop to closed loop, or vice-versa
• Modifying a few instructions of an existing task to popu-

late new tasks (code reuse)
The first example is likely to occur when a parameter

value is not as accurate as predicted. This often happens
due to miscalculations, unexpected changes, or faulty cali-
bration of the robot. A successful framework must be flex-
ible enough to adapt to inconsistencies and uncertainty in
its environment. It is also necessary for a framework to eas-
ily integrate new sensory information or deal with a partic-
ular sensor becoming unavailable. To that end, we support
switching from open loop commands to their closed loop
equivalents, and vice-versa. For example, if necessary sen-
sory data are no longer available, it is possible to change
the code where the data were used from closed loop to open
loop without rewriting the entire task. Lastly, when writing
a new function that is similar to an existing one, it should be
possible to reuse the bulk of the code.

Implementation and Illustrative Examples
In this section, we first describe the actual implementation
on our mobile service robot in detail. Then, we present ex-
amples of task teaching and correction. When presenting
examples, we first describe the tasks, followed by the ini-
tial teaching conversation between the teacher and the robot.
Next, we illustrate the generated instruction graph after pro-
cessing the instructions. Finally, we present an example cor-



rection scenario and discuss the changes reflected upon the
instruction graph for the task as a result of the correction.

We implemented and tested our approach on our CoBot
mobile service robot (Rosenthal, Biswas, and Veloso 2010).
The CoBot service robot has an omnidirectional mobile
base, and is equipped with various sensors including Mi-
crosoft Kinect sensors. The users interact with the robot us-
ing its touch screen interface and microphones (Figure 1).

Figure 1: CoBot service robot.

In the current implementation of our approach, we use
Augmented Reality (AR) tags as the sensory input. AR tags
are visual signs that can be detected and recognized uniquely
through image processing. In addition to the identification
number for a detected AR tag, the relative pose of the tag
with respect to the camera is also computed. Leveraging this
detailed detection ability, the execution of a task can be con-
ditioned upon the existence, the relative distance, and the
relative angle of a certain AR tag in our approach. The user
can instruct the robot either through typing the instruction or
through speech recognition. For the speech recognition, we
use Google Speech API.

In the remainder of this section, we present examples to
task teaching and correction.

Following a Visual Landmark
This task illustrates the use of loop structures to have a con-
tinuous behavior as long as the loop condition holds. The
purpose of the task is to make the robot follow a visual sign.
At each execution cycle, the robot first faces itself toward
the specified visual landmark if the landmark is visible, and
it performs a turning motion to search for the sign if the sign
is not seen by the robot. If the landmark is in the field of
view of the robot and the robot is currently facing towards
it, then, the robot goes toward the sign while maintaining
a certain distance from it. Finally the whole process is re-
peated as long as the visual landmark stays in the sight of the
robot. Both the turning and going forward motions are con-
ditioned upon the specified visual landmark, therefore they
both translate to DoUntil nodes. The While loop translates
to a Conditional node, and a GoTo node. Figure 2 shows the
interaction for teaching the robot to follow a visual sign and
the corresponding generated instruction graph.

User : While landmark 1 is visible
Robot: What should I do in this loop?
User : Turn until landmark 1 is ahead
Robot: I will turn until I am facing landmark 1.

What should I do next?
User : Forward until 0.5 meters from landmark 1 max 0.2 meters
Robot: What should I do next?
User : End Loop
Robot: Loop Ended. What should I do next?
User : Stop

(a)
������������

����	
��
����������������

��
������

���	
��������� �!�"���!���!#�









$��%�
��"

��
������

���	
���������������"���"#�









$��%�
��"

&����

���'	
�

���

���	
����������������#

(�)�





*����

(b)

Figure 2: (a) The teaching conversation for the “follow the
sign” task, and (b) the resulting instruction graph.

Getting Coffee
The second example we present teaches the robot how to

go to a cafe from a starting point and order a cup of coffee.
The task consists of motions performed in open-loop and
demonstrates an example use of an if clause to determine
the course of execution depending on the visibility of a vi-
sual landmark. In the task, the robot first approaches the cafe
counter by going forward and then turning to left. Then, it
checks for the presence of a visual landmark. If the specified
landmark is visible, the robot infers that the cafe is open, and
therefore it proceeds with the ordering. Otherwise, the robot
infers that the cafe is closed, so it terminates the task exe-
cution. Figure 3 shows the interaction between the teacher
and the robot during teaching and the resulting instruction
graph. The motion commands in the beginning of the task
are not conditioned on sensing, therefore they are translated
into Do action type, and are executed in an open-loop man-
ner. The check for the visual landmark is translated into an
If clause, conditioned on the visibility of the specified visual
landmark. Finally, speaking a request for coffee requires no
sensing, so it is also translated into a Do node.

Task Correction
If the user observes that the parameters for the open-loop
actions are imprecise, he or she can make a revision without
re-creating the task from scratch using the debugging and
correction mode. In the correction mode, the robot speaks
the action description for each action, and asks whether the
user confirms that action or wants to make a correction. If the
user confirms the action, the robot leaves that action intact
and proceeds to the next action. However, if the user decides
to correct the action, the robot then asks for a replacement
action. Once the user specifies the replacement action with
its parameters, the original node is updated as to reflect the



User : Forward 5 meters
Robot: What should I do next?
User : Turn left
Robot: What should I do next?
User : If Landmark 1 is visible
Robot: What should I do if Landmark 1 is seen?
User : Say I would like to order a cup of coffee
Robot: What should I do next?
User : End If
Robot: What should I do in the other case?
User : Shutdown

(a)

������������

����	
��
����������������

���

���	
�����������������

��
�

���	
����� ������� ��� �

���
���	
���������!�� "���#���#�

���

���	
��$�%&�

�
'�(

�
&�))��
*�����+�

)����

(�,�

(b)

Figure 3: (a) The teaching conversation for the “get coffee”
task, and (b) the resulting instruction graph.

correction. Figure 4 shows an example interaction for cor-
recting an action on the “get coffee” task presented above.

Robot: Go forward for 5 meters.
Robot: Should I confirm this action or revert it?
User : Revert.
Robot: Please give me a new command to replace this with.
User : Forward 6 meters
Robot: Action revised. The new action is go forward for 6 meters.

Figure 4: An example interaction during step-by-step execu-
tion to correct an action.

Conclusion and Future Work
In this paper, we presented a system for enabling users to
compose tasks for a mobile service robot using spoken or
written verbal instructions. Among the main contributions of
our approach, we can name the closed-loop actuation prim-
itives conditioned on perceiving visual signs, the ability to
represent repetitive tasks using loop structures, and the cor-
rection mode that allows step by step execution and modifi-
cation of the desired portion of the task. By actively seeking
for the known keywords instead of trying to parse the entire
instruction, our system is partially immune to the flexibility
of natural language.

The system is designed and implemented in a modular
manner. The task teaching language is agnostic to the un-
derlying robot primitives. Therefore, extending the language
with additional sensing and actuation elements is straightfor-
ward.

We are planning to extend the current correction mode to
the task teaching phase, hence, enabling the trainer to imme-
diately see the outcome of an action and modify or correct it
as desired. We are also planning to expand the correction no-
tion to the situation-bounded corrections that can be stored
with the state of the system at the time of correction, and

then retrieved and re-used when a similar situation is en-
countered. Finally, we are planning to increase the number
of sensing and actuation elements to enable conditional ac-
tions based on the sensory information such as the human
presence around the robot, proprioceptive sensing, attention,
and gestures.

References
Cantrell, R.; Talamadupula, K.; Schermerhorn, P.; Benton,
J.; Kambhampati, S.; and Scheutz, M. 2012. Tell me when
and why to do it!: run-time planner model updates via natu-
ral language instruction. In Proc. of HRI.
Chuangsuwanich, E.; Cyphers, S.; Glass, J.; and Teller, S.
2010. Spoken command of large mobile robots in outdoor
environments. In Proc. of Spoken Language Technology
Workshop (SLT).
Dzifcak, J.; Scheutz, M.; Baral, C.; and Schermerhorn, P.
2009. What to do and how to do it: Translating natural lan-
guage directives into temporal and dynamic logic represen-
tation for goal management and action execution. In Proc of
ICRA.
Kollar, T.; Tellex, S.; Roy, D.; and Roy, N. 2010. Toward
understanding natural language directions. In Proc. of HRI.
Lauria, S.; Bugmann, G.; Kyriacou, T.; Bos, J.; and Klein, E.
2001. Personal robot training via natural-language instruc-
tions. IEEE Intelligent Systems 16:38–45.
MacMahon, M.; Stankiewicz, B.; and Kuipers, B. 2006.
Walk the talk: Connecting language, knowledge, and action
in route instructions. In Proc. of AAAI.
Matuszek, C.; Fox, D.; and Koscher, K. 2010. Following
directions using statistical machine translation. In Proc of
HRI.
Nicolescu, M. N., and Mataric, M. J. 2003. Natural methods
for robot task learning: Instructive demonstrations, general-
ization and practice. In Proc. of AAMAS.
Rosenthal, S.; Biswas, J.; and Veloso, M. 2010. An Effective
Personal Mobile Robot Agent Through Symbiotic Human-
Robot Interaction. In Proc. of AAMAS.
Rybski, P.; Stolarz, J.; Yoon, K.; and Veloso, M. 2008. Using
dialog and human observations to dictate tasks to a learning
robot assistant. Journal of Intelligent Service Robots, Spe-
cial Issue on Multidisciplinary Collaboration for Socially
Assistive Robotics 1(2):159–167.
Skubic, M.; Perzanowski, D.; Blisard, S.; Schultz, A.;
Adams, W.; Bugajska, M.; and Brock, D. 2004. Spatial
language for human-robot dialogs. Trans. Sys. Man Cyber
Part C 34(2):154–167.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee,
A.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In Proc. of AAAI.
Weitzenfeld, A.; Ejnioui, A.; and Dominey, P. 2010. Hu-
man robot interaction: Coaching to play soccer via spoken-
language. In IEEE/RAS Humanoids’10 Workshop on Hu-
manoid Robots Learning from Human Interaction.


