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Abstract. This paper proposes a set of practical extensions to the vision-based
Monte Carlo localization for RoboCup Sony AIBO legged robot soccenaln.

The main disadvantage of AIBO robots is that they have a narrow fielebafso

the number of landmarks seen in one frame is usually not enough donegec
calculation. MCL methods have been shown to be accurate and robuggedle
robot soccer domain but there are some practical issues that shoulahidled

in order to maintain stability/elasticity ratio in a reasonable level. In other words,
the fast convergence ability is required in case of kidnapping. But owttier
hand, fast converge can be vulnerable when an occasional badrgseading

is received. In this work, we presented four practical extensions iohwitvo of
them are novel approaches and the remaining ones are differanttfegprevious
implementations.

Keywords: Monte Carlo localization, Vision based navigation, mobitdotics,
robot soccer

1 Introduction

The question "Where Am [?” is one of the non-trivial and chadjeng problems of the
mobile robotics and known as the self localization problem.

Monte Carlo Localization (MCL) [1], [2] oparticle filteringis one of the common
approaches to this problem. This approach has been shownaadibust solution for
mobile robot localization; especially for unexpected nmoeats such as "kidnapping”
[3].

The practical steps needed to make MCL reliable and effeativlegged robots
using only vision-based sensors, which have a narrow fieldesf, are presented in
this paper. Most previous implementations have been on tieeled robots using sonar



or laser sensors [3], [4] which have the advantages of 366osgrinformation and

relatively accurate odometry models. Although it has begplied to legged robots
using vision-based sensors in the past [5], [6], [7], theksadescribed in this paper
contribute novel enhancements that make the implementafiparticle filtering more

practical.

This work is done as a part of the Cerberus Project of Bogdnniversity [8].
Cerberus made its debut in 2001 and competed in 2001, 20022@03 RoboCup
events. In this work, we have used Sony AIBO ERS-210 robats 200 MHz processor
as our testbed.

Organization of the rest of the paper is as follows: Briebmfation about Ba-
sic Monte Carlo Localization (MCL) and vision-based MCL igan in Section 2. In
Section 3, information about our application platform isegi. Proposed approach is
explained in Section 4 in detail. Section 5 contains theltesimd we conclude with the
Section 6.

2 Background

2.1 Basic Monte Carlo Localization

MCL is a version of Sampling / Importance Re-sampling aldponi and the variations
of these techniques are also known as Particle Filters. dddcalization suffers from
computation burden since it needs to exprBss(!) over all the possible positions in
the environment. This is usually done by dividing the enviment into grids. If an ac-
curate localization is needed, it means that the grid siealdibe sufficiently small. As
the grids become smaller the number of grids increase ancethéred computations
for belief propagation for entire environment becomes éigiihe idea behind MCL is
to represent the probability distribution function for persor belief about the position
Bel(l) as a set of samples drawn from the distribution. The sampéeghahe format
(x,y,0),p where(z,y, ©) is the position and orientation of the sample and the
discrete probability associated with the sample denotiedikelihood of being at that
position of the sample. SincBel(l) is a probability distribution, sum of a}l; should
be equal to 1. Belief propagation is done in terms of two tygfagpdates. When a mo-
tion update is performed, the new samples, based on bothdlomes and the provided
motion estimation, are generated to reflect the change t’sgbosition. In the motion
update, the samples are displaced according to the retfiiptacement fed by odom-
etry while taking the odometric error into account. For thservation update, the
values of each particlg, p) is multiplied by P(s|!) which is the probability of receiv-
ing sensor reading assuming that the robot is located aThen, updateg values are
normalized to maintaining_ p; = 1.

The second phase of MCL is the so-called resampling phaghkidiphase, a new
sample set is generated by applying fithess-proportiordgetion or the survival of the
fittest rule. The number of instances of a particle in the gexteration is determined
by the formula

N.pi
Zj pj

(1)



The particles with highep values are more likely to be selected and copied to the
new sample set. As a result of this, the particles will evallyumove to the locations
where the robot is more likely to be located at. In the secaep sf resampling, par-
ticles in the new sample set are moved according to theirglitiies. The amount of
movement for a patrticle instance is determined with the tdam

eIt =2l (1 - pl).Rnd(—1,1).Atrans )
y;'T+1 = y;T(l _p;F)Rnd(_la 1)-Atrans (3)
ot =or.(1—pl).Rnd(—1,1).A, (4)

where, Rnd returns a uniform random number in the rarjgd, 1] and A,.q,s and
A, are translational and rotational constants, respectifélg amount of movement
is inversely proportional to the probability so the pag&vith higher probabilities will
have a smaller move than particles with small probabilities

2.2 Vision-Based Monte Carlo Localization

Many variations of MCL exist in the literature but most of sleeare implemented on
wheeled robots equipped with distance sensors such asrkasge finders or sonar
sensors. In RoboCup Four-Legged League, the only senddh#eobot can use for lo-
calization is the color camera mounted on its nose. Theraraggiely bi-colored land-
marks placed around the field so the robot can use the infammabout the distances
and orientations to these landmarks to localize itselfngsiision data obtained from
a single camera is more challenging in some aspects. Thedisgidvantage of vision
data is its narrowness compared to distance sensor arraysch most of them have
a panoramic field of view of 360 degrees. On the other handnethy is more noisy
in legged robots than those in wheeled robots. Narrownefisldfof view prevents the
robot of seeing a high number of landmarks at a time, so it id k@ extract useful
information from single visionary sensor reading. A few Ierpentations in which the
special circumstances mentioned above were taken intaathave been proposed for
the legged robots. The motion update phase is same as theéoggpgroach. Each time
a motion update is received, the particles are moved acuptdithe relative displace-
ment information received. In the observation update phaseneed an observation
model for obtaining the(s, ). Visual feedback obtained from the sensors consist of
a set of visual percepts seen at that time. Relative distandébearing of the percept
from the robot’s egocentric origin is provided and by usinig tnformation,P(s, ) can
be computed as follows

Letv be a visual percept afld = (v, v1, ., v,—1) be the set of visual percepts seen
in a time step. Then the probability of havifgin location! which is P(V, 1) is

N
P(V,1) =[] Fvi.e:) (5)
i=1

wherev; is the observed bearing and distance for pertapte; is the expected dis-
tance and bearing of object seen in the peréapsuming that the robot is located.dh



some aspectd; works as a similarity metric that maps the difference betwegected
and observed properties of an object of interest to a valtieeinang€o, 1]. In our im-
plementationf’ consists of two partsinglesimilarity anddistancesimilarity. For
each processed camera frame, our vision system providesalieation of seen per-
cepts with their relative bearing in radians and relatiwatice in millimeters from the
robot’s egocentric origin.

F(U'hei) = Fangle(”hei)~Fdist(Ui,€7;) (6)
1
Fangte(vi,e1) = 1 + e(—40.Apcaring.0.875) (7
Abearvﬁng = ‘szse“"id _ @él‘pected| ®)
T
_ 1 o
Fasss (v, €) = 1 + e(—20.44i2.0.75) 9)
Adist — ‘min{Di.St%bser’ued’ Di.St%xpected}l (10)
‘max{DZStobserved’ DZStexpectedH

The idea behind using a sigmoid function in similarity cédtion is favoring poses
with small differences between observed and expected yane punishing the poses
with high deviation from the expected values.

3 Robot Soccer Domain

The RoboCup organization is an international initiativeichhaims to build a soccer
team of fully autonomous humanoid robots beating the lastdruworld soccer cham-
pion by the year 2050 [9].Sony four-legged league is one efdbdivisions of the

RoboCup in which two teams each consisting of four Sony AlBBotic dogs com-

pete against each other. Game area is 6m by 4m and four uriigotobed beacons are
placed in order to provide information for localization. s are fully autonomous so
any human intervention other than placing robots on the,fehy off-board compu-

tation and providing external data such as image from oaetlvamera is prohibited.
Field setup can be seen in the Figure 1.

4 Proposed Extensions

4.1 Considering Number of Percepts Seen

The number of landmarks used in the localization processahasnportant role in
determining the actual position and orientation of the ta@waurately. The accuracy of
the estimated position and orientation of the robot in@sagth the increasing number
of landmarks seen in a single frame.

When calculating the confidence on each particle, each larkdeoatributes to the
confidence by its angle and distance similarity. Howevas, #pproach results in an



Fig. 1. Field setup for RoboCup Legged League

undesired output as the number of landmarks increases xaaorpde, seeing a single
landmark having a probability of 0.75 seems to provide aghbeatstimation than four

landmarks each having 0.9 probability which results in 0®@%x 0.9 x 0.9 = 0.6561

confidence. In order to avoid this misinterpretation, cagriitk is calculated in such a
way that increasing number of landmarks increases the @orded The formula used
for calculating the confidence is

con fidence = p(57NP”“"“) (11)

where,Npercepts iS the number of the percepts seen

Since the maximum number of landmarks that can be seen irgke diiame is 4,
p°~% = p assigns the current value of the probability to the confidenhich is the
highest possible value.

4.2 Using Inter-percept Distance

Using the landmark distance and orientation informationigion update phase works
fine under normal conditions. However, all these calcutegtidepend on the assumption
of noiseless information, which is nearly impossible foplgations with real robots.
Introducing noise to the calculations with two static oltgegill conclude to a geometric
space of possible solutions and multiple configurationgasof a single position and a
single configuration in the environment. The number of gdesolutions increases as



Fig. 2. Possible positions and orientations of the robot for (a) one landm3grkwlandmarks,
and (c) three landmarks

the confidence decreases, i.e. the gray area in Figure 3dlvsgAt one extreme point,
when the confidence is complete, the gray area convergesitgla point as shown
in Figure 3 (a). In the opposite case, when the confidencerés #ee robot is lost and
gray area covers the environment. In case of seeing only amdrark, the normal
MCL update rules are applied. But, it is not so rare to see rtttar one landmark (
two beacons or one goal and one beacon ) at a time. In suchusasg,inter-percept
distance provides more accurate estimation than usingpeirdormation individually.

When the robot perceives two static objects, it uses the widtid/or heights of
these objects to calculate the relative distances.

In the Figure 4w; and wy are the perceived width (in pixels) of the static ob-
jects. Similarlyh; and h, are the heights of the static objects. The distanteand
ds can be calculated from these values by using a special tmctihis special func-
tion is calculated by fitting one polynomial or partial pobmials on the top of the
experimental data. When the distances are known, the ctpulaf the orientation is
relatively simple. The angles and 3 can be used to find the orientation of the robot.
Under ideal conditions, where there is no noise and thewisiperfectd;, d-, « and
(8 values are enough to find the current configuration of thetrddowever, there is



Fig. 3. Localization (a) without noise, (b) with noise

B

Fig. 4. Relative distances and orientations. (a) Classified image. (b) Recdgiae objects

noise and it affects the distance calculations dramayickilour case, where the res-
olution is 176x144, two-pixel error in the width of the statibjects causes less than
one-centimeter distance error for near objects. But, foolfgects, two-pixel error may
cause up to 50 cm distance error.

At this point, we used another measure, which is the distaateeen the perceived
static objects. This measure both reduces the sensitivitgise and provides additional
information for localization.

In Monte Carlo Localization (MCL), a population of candidatonfigurations is
used to converge to the actual position of the robot. Durlrgiteration process, a
probability value for each configuration is calculated. Toafigurations with higher
probabilities are selected more frequently for the nexatten. The calculation of these
probabilites are given in Section 2.2. However, to use thadce between the static ob-
jects, more complicated equations are required. Becaugerspective, the difference
of estimated and expected distances cannot be used directly

As shown in Figure 5 the estimated distance should be compeith a + b, but
notds. As an example, suppose that the static objects &r€ at; ) and(s?, s> ). For a



given robot configuratiofiz, y, @), the following equations are used to calculatend
b.

di = \/(sa1 = 2)? + (sy1 — y)? (12)
dy = \/(sz2 — x)? + (sy2 — y)? (13)
o= arcTan(::xyi%i) -0 (14)
g8 = arcTan(jxyzi:i) -0 (15)

sq = cos((3).da,dy > da; cos(a).dy, 0/w (16)
a = tan(a).sq a7

= tan(f5).sq (18)

Wheresy is the scene distance, which is the projection line (or plai3®) distance
to the robot. Furthermoréq + b) is the distance between the two static objects on the
projection plane at,.

After those calculations, we have two values to comparefif$teone is the distance
between two static objects, calculated from the capturedjeanwhich is in pixels. The
other one ifa + b) which is in mm. In our work, we used the ratio of each distamce t
the width of the image, instead of, converting the units. fittst ratio is trivial.

ds
visionRatio = (29)
Wimg

where,d, is the distance between static objects ang,, is the captured image
width

However the second ratio depends agaiarin addition, horizontal field of view
(FoV) of the camera is also used to calculate the width of tiegeption line or plane.
For AIBO ERS-210’s horizontal FoV is 57.6 degrees.

(a+0)
tan(FoV/2).2.54

expected Ratio = (20)

And finally the affect of the distance between the static cisjéo the overall con-
figuration probability is calculated as follows,

1
Pd = 7 (0.4 0110.0.875) (21)
A |min{visionRatio, expected Ratio}| (22)

|max{visionRatio, expected Ratio}|

At the end of each iteration of MCL, for each configurationstive; values, which
are calculated from distances, orientations and otheiilgessources, are multiplied to
find the final confidence of the configuration.



In our work, we use a two-dimensional representation of tivrenment instead of
a three-dimensional one. Since the effects of rotation@timera and the orientation
of the robot are handled in the object recognition subsysteis representation works
well. However, we assume that the heights of the static ¢bpaed the robot are equal.
In addition, we only consider the horizontal difference lehéstimating the distance
between static objects.

Fig. 5. Calculation of Distance Projection

4.3 Variable-Size Number of Particles

In MCL the number of particles, which are candidate configars for current po-
sition, is one of the most important parameters. If the uassarily large amount of
particles used, the process slows down dramatically.

On the other hand, if the number of particles is too small,9ystem converges
to a configuration very slowly, or cannot converge at all. @nossible solution is to
fix the number of particles to a constant for which the proogsspeed is moderate
and the localization converges in a reasonable amount.rBthis scenario, when the
localization starts to converge, which means the candizaiégurations are similar to
each other, most of the processing is unnecessary.

In our localization system, the number of particles is assigto the maximum
number of particles allowed. This maximum number is the kwgarticle count for



(a)
(b)
]

Fig. 6. Number of particles changes while (a) searching, (b) converging@runverged
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which the localization system converges in a reasonable, tion nearly all cases. But
still it is a large number. During the execution of the lozation system, the number of
particles is reduced if the confidence about the positiomefrobot increases. Which
means, the system searches fewer configurations if it isioeabout its position, as
shown in Figure 6.

Similarly, when the confidence about the current pose of dhetrdecreases, the
number of particles increases, which means the search fetter lconfiguration speeds
up. This oscillation continues if the confidence for the entmpose is above a specific
constant. Otherwise, which means the robot is lost, the denéie is set to zero and the
entire process is restarted.

The overall process can be modeled by the following equation

Npar = K.p,p>T; K,0/w (23)

Where N, is the number of particles, which are candidate configunafi&’ is
the maximum number of particles apds the confidence of the current pose. Finally,
T is the threshold value for reseting the system to the lot sta



4.4 Dynamic Window Size Based on Pose Confidence for Resanmgi

In the earlier approaches, when the confidence on the cuposition decreases be-
low a threshold value, the positions and orientations ohgzticle are reset and the
particles are distributed over the entire field randomlywieeer, each reset operation
requires processing a large number of particles over a Enege In order to solve this
problem, a window, in which the particles will be distribdfds constructed around
the representative particle. The size of this window is liggly proportional with the
confidence value of the representative particle, and thebeuwf particles that will be
distributed in this window is directly proportional to thize of the window. That is,
when the confidence on the representative is high, the wircdmstructed around the
representative and the number of particles that will be isedhall. If a reset operation
fails to include particles having significant probabilitglves, the size and the number
of particles that will be used in the next reset operationgreglually increased. This
approach provides a faster convergence since a smallerarwhparticles in a smaller
area are processed. Figure 7 illustrates the situation inhathe robot is kidnapped
from the blue goal into the yellow goal. Convergence is sdtar & frames, and after
11 frames the robot finds its position and orientation.

5 Results

To test the efficiency of the extensions, we have performeddifferent experiments.

In both experiments, extended MCL is compared with the pabimplementation. To

test both the converge time and the estimation error, thetiisiplaced to the upper left
corner of the field in order to provide enough number of viqelepts. Localization

process is terminated if 95 percent confidence is achieveldeoprocess iterates 200
times. The iteration counts for converging to a point andidise error of that point to

the actual position are given in Table 1.

According to the results, extended MCL reduces the itematiunt to converge a
configuration and the error of this configuration nearly bybfcent. Since the standard
MCL fails to converge for some iteration, the iteration cbisrhigh than extended MCL
in average.

In the second experiment, we tested the convergence spdld ofiginal and ex-
tended implementations in case of kidnapping. The robotasad from where the
localization system is converged to a point farther awaythede-convergence time is
logged. The results can be seen in Table 2.

6 Conclusions

Autonomous self localization is one of the key problems irbiteorobotics research
and have been addressed many times with proposed manyediffgoproaches. Robot
soccer is a good test bed for many aspects of the mobile msbmsearch such as
multi-agent systems, computer vision, self localization affective locomotion with
its highly dynamic and partially observable nature.



Fig. 7. (a) Just after being kidnapped, (b) first frame after kidnappingfter 2 frames, (d) after
3 frames, (e) after 4 frames, and (f) after 11 frames the robas fisgosition

In this paper, we proposed several novel extensions to ienbased Monte Carlo
Localization for legged robots playing soccer. MCL is a skniyased statistical method
for estimating the robot’s current pose in the environmegnepresenting the probabil-
ity distribution of being at a certain pose as a set of sangrasn from that distribution.
The probabilities are updated through a motion model whicets the movement of
the robot in terms of relative displacements and obsenvatiodel which models the
likelihood of receiving a certain observation from a cartpbse. Although the idea
of both MCL and our extensions are straightforward, themkhbe some extensions
to the core idea in order to handle limited and noisy sensdfigrination, unreliable
motion models and some extreme conditions such as the keal&&dnapping problem.

In this work, we have proposed four practical extensionfigovision-based MCL
for legged robots. Using variable number of particles is aoiew approach, but our
implementation has no extra computational requirement@®ther implementations
(i.e. determining the number of particles proportionalhte variance of confidences in
sample set). Using inter-percept distance in addition stadices and bearings to the
percepts is a novel approach and the results are quiteasatisf. Also, considering
the number of percepts seen while calculating the pose emdlis a novel approach



Table 1. Convergence time and error ratios for Extended MCL vs. Standart MCL

Extended MCL Standart MCL

Iter. CountDistance Error (cm) Iter. CountDistance Error (cm)

12 6.96 10 17.72

121 6.06 200 28.98

52 21.28 10 7.43

11 12.54 10 13.54

11 2.83 16 5.39

13 7.70 17 23.58

50 18.96 15 20.7¢

16 18.28 200 33.84

16 8.39 200 35.11

77 5.28 20 18.44
Averages

37.9 10.83 69.8 20.47

Table 2. Re-convergence time in case of kidnapping for Extended MCL vs. StaMtCL

Extended MCL Standart MCL
Kidnapping Distance (mmiNumber of Frame&idnapping Distance (mmiNumber of Frames
3550 26| 3550 35
2280 9 2280 15
1760 11 1760 39

and allows the observations with high number of percepte agher effect on the
confidence, in other words, the more number of percepts seemmore reliable the
observation is. Again, using a subset of the state space$ampling when our belief
about the current pose is over a threshold is not a new idethéwur way of window
size and position determination for resampling is novel.

Using proposed extensions allowed the system to convepidlyavithout affecting
from an occasional bad sensor reading while maintainingigmelasticity that allows
a fast convergence in case of kidnapping.
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