
Practical Extensions to Vision-Based Monte Carlo
Localization Methods for Robot Soccer Domain
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Abstract. This paper proposes a set of practical extensions to the vision-based
Monte Carlo localization for RoboCup Sony AIBO legged robot soccer domain.
The main disadvantage of AIBO robots is that they have a narrow field of view so
the number of landmarks seen in one frame is usually not enough for geometric
calculation. MCL methods have been shown to be accurate and robust in legged
robot soccer domain but there are some practical issues that should be handled
in order to maintain stability/elasticity ratio in a reasonable level. In other words,
the fast convergence ability is required in case of kidnapping. But on theother
hand, fast converge can be vulnerable when an occasional bad sensor reading
is received. In this work, we presented four practical extensions in which two of
them are novel approaches and the remaining ones are different from the previous
implementations.

Keywords: Monte Carlo localization, Vision based navigation, mobilerobotics,
robot soccer

1 Introduction

The question ”Where Am I?” is one of the non-trivial and challenging problems of the
mobile robotics and known as the self localization problem.

Monte Carlo Localization (MCL) [1], [2] orparticle filtering is one of the common
approaches to this problem. This approach has been shown to be a robust solution for
mobile robot localization; especially for unexpected movements such as ”kidnapping”
[3].

The practical steps needed to make MCL reliable and effective on legged robots
using only vision-based sensors, which have a narrow field ofview, are presented in
this paper. Most previous implementations have been on the wheeled robots using sonar



or laser sensors [3], [4] which have the advantages of 360 sensory information and
relatively accurate odometry models. Although it has been applied to legged robots
using vision-based sensors in the past [5], [6], [7], the works described in this paper
contribute novel enhancements that make the implementation of particle filtering more
practical.

This work is done as a part of the Cerberus Project of BogaziciUniversity [8].
Cerberus made its debut in 2001 and competed in 2001, 2002, and 2003 RoboCup
events. In this work, we have used Sony AIBO ERS-210 robots with 200 MHz processor
as our testbed.

Organization of the rest of the paper is as follows: Brief information about Ba-
sic Monte Carlo Localization (MCL) and vision-based MCL is given in Section 2. In
Section 3, information about our application platform is given. Proposed approach is
explained in Section 4 in detail. Section 5 contains the results and we conclude with the
Section 6.

2 Background

2.1 Basic Monte Carlo Localization

MCL is a version of Sampling / Importance Re-sampling algorithm and the variations
of these techniques are also known as Particle Filters. Markov localization suffers from
computation burden since it needs to expressBel(l) over all the possible positions in
the environment. This is usually done by dividing the environment into grids. If an ac-
curate localization is needed, it means that the grid size should be sufficiently small. As
the grids become smaller the number of grids increase and therequired computations
for belief propagation for entire environment becomes higher. The idea behind MCL is
to represent the probability distribution function for posterior belief about the position
Bel(l) as a set of samples drawn from the distribution. The samples are in the format
(x, y,Θ), p where(x, y,Θ) is the position and orientation of the sample andp is the
discrete probability associated with the sample denoting the likelihood of being at that
position of the sample. SinceBel(l) is a probability distribution, sum of allpi should
be equal to 1. Belief propagation is done in terms of two typesof updates. When a mo-
tion update is performed, the new samples, based on both the old ones and the provided
motion estimation, are generated to reflect the change in robot’s position. In the motion
update, the samples are displaced according to the relativedisplacement fed by odom-
etry while taking the odometric error into account. For the observation update, thep
values of each particle(l, p) is multiplied byP (s|l) which is the probability of receiv-
ing sensor readings assuming that the robot is located atl. Then, updatedp values are
normalized to maintaining

∑

pi = 1.
The second phase of MCL is the so-called resampling phase. Inthis phase, a new

sample set is generated by applying fitness-proportionate selection or the survival of the
fittest rule. The number of instances of a particle in the nextgeneration is determined
by the formula

K =
N.pi
∑

j pj

(1)



The particles with higherp values are more likely to be selected and copied to the
new sample set. As a result of this, the particles will eventually move to the locations
where the robot is more likely to be located at. In the second step of resampling, par-
ticles in the new sample set are moved according to their probabilities. The amount of
movement for a particle instance is determined with the formula

xT+1
i = xT

i .(1 − pT
i ).Rnd(−1, 1).∆trans (2)

yT+1
i = yT

i .(1 − pT
i ).Rnd(−1, 1).∆trans (3)

ΘT+1
i = ΘT

i .(1 − pT
i ).Rnd(−1, 1).∆rot (4)

where,Rnd returns a uniform random number in the range[−1, 1] and∆trans and
∆rot are translational and rotational constants, respectively. The amount of movement
is inversely proportional to the probability so the particles with higher probabilities will
have a smaller move than particles with small probabilities.

2.2 Vision-Based Monte Carlo Localization

Many variations of MCL exist in the literature but most of these are implemented on
wheeled robots equipped with distance sensors such as laserrange finders or sonar
sensors. In RoboCup Four-Legged League, the only sensor that the robot can use for lo-
calization is the color camera mounted on its nose. There areuniquely bi-colored land-
marks placed around the field so the robot can use the information about the distances
and orientations to these landmarks to localize itself. Using vision data obtained from
a single camera is more challenging in some aspects. The maindisadvantage of vision
data is its narrowness compared to distance sensor arrays inwhich most of them have
a panoramic field of view of 360 degrees. On the other hand, odometry is more noisy
in legged robots than those in wheeled robots. Narrowness offield of view prevents the
robot of seeing a high number of landmarks at a time, so it is hard to extract useful
information from single visionary sensor reading. A few implementations in which the
special circumstances mentioned above were taken into account have been proposed for
the legged robots. The motion update phase is same as the generic approach. Each time
a motion update is received, the particles are moved according to the relative displace-
ment information received. In the observation update phase, we need an observation
model for obtaining theP (s, l). Visual feedback obtained from the sensors consist of
a set of visual percepts seen at that time. Relative distanceand bearing of the percept
from the robot’s egocentric origin is provided and by using this information,P (s, l) can
be computed as follows

Let v be a visual percept andV = (v0, v1, ., vn−1) be the set of visual percepts seen
in a time step. Then the probability of havingV in locationl which isP (V, l) is

P (V, l) =

N
∏

i=1

F (vi, ei) (5)

wherevi is the observed bearing and distance for percepti andei is the expected dis-
tance and bearing of object seen in the percepti assuming that the robot is located atl. In



some aspects,F works as a similarity metric that maps the difference between expected
and observed properties of an object of interest to a value inthe range[0, 1]. In our im-
plementation,F consists of two parts:anglesimilarity anddistancesimilarity. For
each processed camera frame, our vision system provides us acollection of seen per-
cepts with their relative bearing in radians and relative distance in millimeters from the
robot’s egocentric origin.

F (vi, ei) = Fangle(vi, ei).Fdist(vi, ei) (6)

Fangle(vi, ei) =
1

1 + e(−40.∆bearing.0.875)
(7)

∆bearing =
|Θi

observed − Θi
expected|

π
(8)

Fdist(vi, ei) =
1

1 + e(−20.∆dist.0.75)
(9)

∆dist =
|min{Distiobserved,Distiexpected}|

|max{Distiobserved,Distiexpected}|
(10)

The idea behind using a sigmoid function in similarity calculation is favoring poses
with small differences between observed and expected values and punishing the poses
with high deviation from the expected values.

3 Robot Soccer Domain

The RoboCup organization is an international initiative which aims to build a soccer
team of fully autonomous humanoid robots beating the last human world soccer cham-
pion by the year 2050 [9].Sony four-legged league is one of the subdivisions of the
RoboCup in which two teams each consisting of four Sony AIBO robotic dogs com-
pete against each other. Game area is 6m by 4m and four unique bi-colored beacons are
placed in order to provide information for localization. Robots are fully autonomous so
any human intervention other than placing robots on the field, any off-board compu-
tation and providing external data such as image from overhead camera is prohibited.
Field setup can be seen in the Figure 1.

4 Proposed Extensions

4.1 Considering Number of Percepts Seen

The number of landmarks used in the localization process hasan important role in
determining the actual position and orientation of the robot accurately. The accuracy of
the estimated position and orientation of the robot increases with the increasing number
of landmarks seen in a single frame.

When calculating the confidence on each particle, each landmark contributes to the
confidence by its angle and distance similarity. However, this approach results in an



Fig. 1.Field setup for RoboCup Legged League

undesired output as the number of landmarks increases. For example, seeing a single
landmark having a probability of 0.75 seems to provide a better estimation than four
landmarks each having 0.9 probability which results in 0.9 x0.9 x 0.9 x 0.9 = 0.6561
confidence. In order to avoid this misinterpretation, confidence is calculated in such a
way that increasing number of landmarks increases the confidence. The formula used
for calculating the confidence is

confidence = p(5−Npercepts) (11)

where,Npercepts is the number of the percepts seen
Since the maximum number of landmarks that can be seen in a single frame is 4,

p5−4 = p assigns the current value of the probability to the confidence which is the
highest possible value.

4.2 Using Inter-percept Distance

Using the landmark distance and orientation information invision update phase works
fine under normal conditions. However, all these calculations depend on the assumption
of noiseless information, which is nearly impossible for applications with real robots.
Introducing noise to the calculations with two static objects will conclude to a geometric
space of possible solutions and multiple configurations instead of a single position and a
single configuration in the environment. The number of possible solutions increases as



Fig. 2. Possible positions and orientations of the robot for (a) one landmark, (b) two landmarks,
and (c) three landmarks

the confidence decreases, i.e. the gray area in Figure 3 (b) grows. At one extreme point,
when the confidence is complete, the gray area converges to a single point as shown
in Figure 3 (a). In the opposite case, when the confidence is zero, the robot is lost and
gray area covers the environment. In case of seeing only one landmark, the normal
MCL update rules are applied. But, it is not so rare to see morethan one landmark (
two beacons or one goal and one beacon ) at a time. In such case,using inter-percept
distance provides more accurate estimation than using percept information individually.

When the robot perceives two static objects, it uses the widths and/or heights of
these objects to calculate the relative distances.

In the Figure 4w1 and w2 are the perceived width (in pixels) of the static ob-
jects. Similarlyh1 andh2 are the heights of the static objects. The distancesd1 and
d2 can be calculated from these values by using a special function. This special func-
tion is calculated by fitting one polynomial or partial polynomials on the top of the
experimental data. When the distances are known, the calculation of the orientation is
relatively simple. The anglesα andβ can be used to find the orientation of the robot.
Under ideal conditions, where there is no noise and the vision is perfect,d1, d2, α and
β values are enough to find the current configuration of the robot. However, there is



Fig. 3.Localization (a) without noise, (b) with noise

Fig. 4.Relative distances and orientations. (a) Classified image. (b) Recognized static objects

noise and it affects the distance calculations dramatically. In our case, where the res-
olution is 176x144, two-pixel error in the width of the static objects causes less than
one-centimeter distance error for near objects. But, for far objects, two-pixel error may
cause up to 50 cm distance error.

At this point, we used another measure, which is the distancebetween the perceived
static objects. This measure both reduces the sensitivity to noise and provides additional
information for localization.

In Monte Carlo Localization (MCL), a population of candidate configurations is
used to converge to the actual position of the robot. During the iteration process, a
probability value for each configuration is calculated. Theconfigurations with higher
probabilities are selected more frequently for the next iteration. The calculation of these
probabilites are given in Section 2.2. However, to use the distance between the static ob-
jects, more complicated equations are required. Because ofperspective, the difference
of estimated and expected distances cannot be used directly.

As shown in Figure 5 the estimated distance should be compared with a + b, but
notd3. As an example, suppose that the static objects are at(s1

x, s1
y) and(s2

x, s2
y). For a



given robot configuration(x, y,Θ), the following equations are used to calculatea and
b.

d1 =
√

(sx1 − x)2 + (sy1 − y)2 (12)

d2 =
√

(sx2 − x)2 + (sy2 − y)2 (13)

α = arcTan(
sy1 − y

sx1 − x
) − θ (14)

β = arcTan(
sy2 − y

sx2 − x
) − θ (15)

sd = cos(β).d2, d1 > d2; cos(α).d1, o/w (16)

a = tan(α).sd (17)

b = tan(β).sd (18)

Wheresd is the scene distance, which is the projection line (or planein 3D) distance
to the robot. Furthermore,(a + b) is the distance between the two static objects on the
projection plane atsd.

After those calculations, we have two values to compare. Thefirst one is the distance
between two static objects, calculated from the captured image, which is in pixels. The
other one is(a + b) which is in mm. In our work, we used the ratio of each distance to
the width of the image, instead of, converting the units. Thefirst ratio is trivial.

visionRatio =
ds

wimg

(19)

where,ds is the distance between static objects and,wimg is the captured image
width

However the second ratio depends again onsd. In addition, horizontal field of view
(FoV) of the camera is also used to calculate the width of the projection line or plane.
For AIBO ERS-210’s horizontal FoV is 57.6 degrees.

expectedRatio =
(a + b)

tan(FoV/2).2.sd

(20)

And finally the affect of the distance between the static objects to the overall con-
figuration probability is calculated as follows,

pd =
1

1 + e(−40.∆ratio.0.875)
(21)

∆ratio =
|min{visionRatio, expectedRatio}|

|max{visionRatio, expectedRatio}|
(22)

At the end of each iteration of MCL, for each configuration thesepd values, which
are calculated from distances, orientations and other possible sources, are multiplied to
find the final confidence of the configuration.



In our work, we use a two-dimensional representation of the environment instead of
a three-dimensional one. Since the effects of rotation of the camera and the orientation
of the robot are handled in the object recognition subsystem, this representation works
well. However, we assume that the heights of the static objects and the robot are equal.
In addition, we only consider the horizontal difference while estimating the distance
between static objects.

Fig. 5.Calculation of Distance Projection

4.3 Variable-Size Number of Particles

In MCL the number of particles, which are candidate configurations for current po-
sition, is one of the most important parameters. If the unnecessarily large amount of
particles used, the process slows down dramatically.

On the other hand, if the number of particles is too small, thesystem converges
to a configuration very slowly, or cannot converge at all. Onepossible solution is to
fix the number of particles to a constant for which the processing speed is moderate
and the localization converges in a reasonable amount. But in this scenario, when the
localization starts to converge, which means the candidateconfigurations are similar to
each other, most of the processing is unnecessary.

In our localization system, the number of particles is assigned to the maximum
number of particles allowed. This maximum number is the lowest particle count for



Fig. 6.Number of particles changes while (a) searching, (b) converging and(c) converged

which the localization system converges in a reasonable time, for nearly all cases. But
still it is a large number. During the execution of the localization system, the number of
particles is reduced if the confidence about the position of the robot increases. Which
means, the system searches fewer configurations if it is certain about its position, as
shown in Figure 6.

Similarly, when the confidence about the current pose of the robot decreases, the
number of particles increases, which means the search for a better configuration speeds
up. This oscillation continues if the confidence for the current pose is above a specific
constant. Otherwise, which means the robot is lost, the confidence is set to zero and the
entire process is restarted.

The overall process can be modeled by the following equation,

Npar = K.p, p > T ;K, o/w (23)

WhereNpar is the number of particles, which are candidate configurations,K is
the maximum number of particles andp is the confidence of the current pose. Finally,
T is the threshold value for reseting the system to the lost state.



4.4 Dynamic Window Size Based on Pose Confidence for Resampling

In the earlier approaches, when the confidence on the currentposition decreases be-
low a threshold value, the positions and orientations of each particle are reset and the
particles are distributed over the entire field randomly. However, each reset operation
requires processing a large number of particles over a largearea. In order to solve this
problem, a window, in which the particles will be distributed, is constructed around
the representative particle. The size of this window is inversely proportional with the
confidence value of the representative particle, and the number of particles that will be
distributed in this window is directly proportional to the size of the window. That is,
when the confidence on the representative is high, the windowconstructed around the
representative and the number of particles that will be usedis small. If a reset operation
fails to include particles having significant probability values, the size and the number
of particles that will be used in the next reset operation aregradually increased. This
approach provides a faster convergence since a smaller number of particles in a smaller
area are processed. Figure 7 illustrates the situation in which the robot is kidnapped
from the blue goal into the yellow goal. Convergence is seen after 5 frames, and after
11 frames the robot finds its position and orientation.

5 Results

To test the efficiency of the extensions, we have performed two different experiments.
In both experiments, extended MCL is compared with the original implementation. To
test both the converge time and the estimation error, the robot is placed to the upper left
corner of the field in order to provide enough number of visualpercepts. Localization
process is terminated if 95 percent confidence is achieved orthe process iterates 200
times. The iteration counts for converging to a point and distance error of that point to
the actual position are given in Table 1.

According to the results, extended MCL reduces the iteration count to converge a
configuration and the error of this configuration nearly by 50percent. Since the standard
MCL fails to converge for some iteration, the iteration count is high than extended MCL
in average.

In the second experiment, we tested the convergence speed ofthe original and ex-
tended implementations in case of kidnapping. The robot is moved from where the
localization system is converged to a point farther away andthe re-convergence time is
logged. The results can be seen in Table 2.

6 Conclusions

Autonomous self localization is one of the key problems in mobile robotics research
and have been addressed many times with proposed many different approaches. Robot
soccer is a good test bed for many aspects of the mobile robotics research such as
multi-agent systems, computer vision, self localization and effective locomotion with
its highly dynamic and partially observable nature.



Fig. 7. (a) Just after being kidnapped, (b) first frame after kidnapping, (c) after 2 frames, (d) after
3 frames, (e) after 4 frames, and (f) after 11 frames the robot finds its position

In this paper, we proposed several novel extensions to the vision based Monte Carlo
Localization for legged robots playing soccer. MCL is a sample based statistical method
for estimating the robot’s current pose in the environment by representing the probabil-
ity distribution of being at a certain pose as a set of samplesdrawn from that distribution.
The probabilities are updated through a motion model which models the movement of
the robot in terms of relative displacements and observation model which models the
likelihood of receiving a certain observation from a certain pose. Although the idea
of both MCL and our extensions are straightforward, there should be some extensions
to the core idea in order to handle limited and noisy sensory information, unreliable
motion models and some extreme conditions such as the so-called kidnapping problem.

In this work, we have proposed four practical extensions to the vision-based MCL
for legged robots. Using variable number of particles is nota new approach, but our
implementation has no extra computational requirement as the other implementations
(i.e. determining the number of particles proportional to the variance of confidences in
sample set). Using inter-percept distance in addition to distances and bearings to the
percepts is a novel approach and the results are quite satisfactory. Also, considering
the number of percepts seen while calculating the pose confidence is a novel approach



Table 1.Convergence time and error ratios for Extended MCL vs. Standart MCL

Extended MCL Standart MCL
Iter. CountDistance Error (cm) Iter. CountDistance Error (cm)

12 6.96 10 17.72
121 6.06 200 28.98
52 21.28 10 7.43
11 12.54 10 13.54
11 2.83 16 5.39
13 7.70 17 23.58
50 18.96 15 20.70
16 18.28 200 33.84
16 8.39 200 35.11
77 5.28 20 18.44

Averages
37.9 10.83 69.8 20.47

Table 2.Re-convergence time in case of kidnapping for Extended MCL vs. Standart MCL

Extended MCL Standart MCL
Kidnapping Distance (mm)Number of FramesKidnapping Distance (mm)Number of Frames

3̃550 26 3̃550 35
2̃280 9 2̃280 15
1̃760 11 1̃760 39

and allows the observations with high number of percepts have higher effect on the
confidence, in other words, the more number of percepts seen,the more reliable the
observation is. Again, using a subset of the state space for resampling when our belief
about the current pose is over a threshold is not a new idea butthe our way of window
size and position determination for resampling is novel.

Using proposed extensions allowed the system to converge rapidly without affecting
from an occasional bad sensor reading while maintaining enough elasticity that allows
a fast convergence in case of kidnapping.
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This project is supported by Boğaziçi University Research Fund project 03A101D.

References

1. S. Thrun, D. Fox, W. Burgard, and F. Dellaert, ”Robust Monte Carlo Localization for Mobile
Robots”, Journal of Artificial Intelligence, 2001.



2. S. Thrun, ”Particle Filters in Robotics”, In The 17th Annual Conference on Uncertainty in AI
(UAI), 2002.

3. D. Fox, W. Burgard, H. Kruppa, and S. Thrun, ”Markov Localization for Mobile Robots in
Dynamic Environments” Journal of Artificial Intelligence, 11, 1999.

4. D. Fox, ”Adapting the Sample Size in Particle Filters Through KLD-Sampling” International
Journal of Robotics Research, 2003.

5. C. Kwok and D. Fox, ”Map-Based Multiple Model Tracking of a MovingObject” In The
International RoboCup Symposium, Lisbon, 2004.

6. Scott Lenser and Manuela Veloso, ”Sensor Resetting Localization forPoorly Modelled Mo-
bile Robots” In The International Conference on Robotics and Automation, April, 2000.

7. T. Rofer and M. Jungel, ”Vision-Based Fast and Reactive Monte-Carlo Localization” In The
IEEE International Conference on Robotics and Automation, pages 856-861, Taipei, Taiwan,
2003.

8. H. L. Akin, et al., ”Cerberus 2003” Robocup 2003: Robot Soccer World Cup VII, The 2003
International Robocup Symposium Pre-Proceedings, June 24-25, 2003, Padova, pp.448.

9. Robocup Organization ”http://www.robocup.org”


