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Abstract. For succesful accomplishment the top-level goal of a multi-
robot team should be decomposed into a sequence of sub-goals and
proper sequences of actions for achieving these subgoals should be se-
lected and refined through execution. Selecting the proper actions at
any given time requires the ability to evaluate the current state of the
environment, which can be achieved by using metrics that give quanti-
tative information about the environment. Defining appropriate metrics
is already a challenging problem; however, it is even harder to assess the
performance of individual metrics. This work proposes a layered evalu-
ation scheme for robot soccer where the environment is represented in
different time resolutions at each layer. A set of metrics defined on these
layers together with a novel metric validation method for assessing the
performance of the defined metrics are proposed.

1 INTRODUCTION

In a multi-robot system, both individual robots and the entire team are con-
fronted with a set of decisions for achieving both short-term and long term goals.
In order to make a decision, one needs to evaluate the current situation of the
environment. Evaluation of the current situation requires statistically consistent
quantitative metrics but both defining appropriate metrics and validating them
are challenging processes.

Robot soccer is a good platform to test and develop multi-agent applications
because it has some physical limitations such as limited and noisy sensorial
information and limited moving capability as in the real life and it also has a
highly dynamic, real-time environment.

Definition of metrics for performance evaluation of multi-robot systems is
is not a deeply investigated research topic so far. VerDuin et al. drew the at-
tention on the importance of evaluating the performance evaluation metrics by
investigating the efficiencies of different criteria used in model evaluation in ma-
chine learning [1]. Yavnai proposed a set of metrics for classification of system



autonomy [2]. Horst applied previously published Naive Intelligence Metric on
autonomous driving problem [3]. Olsen and Goodrich proposed six metrics for
evaluating human computer interactions [4]. Balch has proposed a metric called
Social Entropy based on Shannon’s Information Entropy for measuring the be-
havioral diversity of a team of homogeneous robots [5]. On evaluating real soccer
games, Rue and Salvesen applied Markov Chain Monte Carlo method on the fi-
nal results of the games played during a limited time period for predicting the
possible results of the forthcoming games [6]. Yanco discussed the methods of
defining metrics for robot competitions in order to be able to judge the partici-
pants efficiently [7].

In the RoboCup domain, Kok et al. used the distance and the orientation
of the ball with respect to the opponent goal, and the position of the opponent
goalkeeper for determining the optimal scoring policy in RoboCup 2D Simula-
tion environment [8]. Dylla et al. have initiated a qualitative soccer formalism for
robot soccer [9]. They proposed a top-down approach to the soccer knowledge,
following the classical soccer theory. Quantitative information like the distance
and orientation to the ball, distance and orientation to the opponent goal and
distance to the nearest teammate are widely used in role assignment or individ-
ual behavior selection [10, 11]. Quinlan et al. proposed to use more high-level
measurements like the goal difference and the remaining time to the end of the
game in determining team aggression level [12].

In this work, we propose a three-layered decomposition of a soccer game
in which each layer deals with the system at a different time resolution. A set
of metrics built on top of position information of players and the ball in three
different time resolutions are also presented. Finally, a novel, contingency table
based validation method for metric consistency is given. The main contributions
of this work are:

– Metric validation problem is stated as a challenging problem where au-
tonomous decision making systems are in use.

– A novel statistical method is proposed for addressing the metric validation
problem.

– A three-layered decomposition of the soccer game is given and a set of metrics
are defined on different time resolutions.

Organization of the rest of the paper as follows: In Section 2, proposed ap-
proach is explained in detail. Section 3 contains explanation of metric validation
process and finally, we conclude and point out some future works in Section 4.

2 PROPOSED APPROACH

The most primitive information we can estimate in the environment is the posi-
tion information of players and the ball so we defined a set of metrics calculated
from the position information for different time resolutions. It is assumed that
the positions of opponent players are also known with a degree of error.



Since there are both team-level long-term goals and individual-level short-
term goals, we need a game decomposition in different time resolutions. We
propose three layers defined on different time resolutions in a game:

– Instantaneous Level
– Play Level
– Game Level

2.1 Instantaneous Metrics

Instantaneous metrics are calculated from one time-step position information.
Since getting the control of the ball is the most important sub-task, most of the
metrics are proposed for evaluating the chance of getting control of the ball.

Convex Hull Metrics
Convex Hull of a set of points is defined as the smallest convex polygon in

which all of the points in the set lies. In an analogous manner, by substituting
points with the players in the soccer, we obtain a new concept: Convex Hull of
a Team. We propose two metrics involving the convex hull of a team:

– The Area of Convex Hull tends to measure the degree of spread of the team
over the field. The value of this metric increases as the team members are
scattered across the field.

– Density of Convex Hull is applied only if the ball falls within the convex
hull. The formal definition of the density is given in Equation 1.

Density =
∑N

i=1

√
(Xplayer(i) −Xball)2 + (Yplayer(i) − Yball)2

N
(1)

where, N is the number of players on the corners of the convex hull. If the ball
is in the own half of the field, the goalkeeper is included in the convex hull
calculation. If the ball is in the opponent field, the goalkeeper is excluded.

The density value is calculated only if the ball falls within the convex hull.
If the ball falls outside of the convex hull, then the value of the metric is 0.
The probability of the ball falling within the convex hull increases as the area of
convex hull increases and it is expected that if the ball falls within the convex
hull, the probability of getting the control of the ball increases. On the other
hand, it is expected that the probability of getting the control of the ball increases
as the density of the convex hull increases.

Vicinity Occupancy
Vicinity Occupancy measures the ratio of the teams players to the opponent

players within a vicinity of the object of interest. The formal definition of the
vicinity occupancy is given in Equation 2.

Occupancy =
Pown − Popp

Pown + Popp
(2)



Fig. 1. Convex Hulls of two teams at a time point

where, Pown is the number of own players in the vicinity of the object of interest,
Popp is the number of opponent players in the vicinity, and P is the total number
of players in the vicinity. The result is a real number in the interval [−1, 1] where
−1 means that the vicinity is dominated by the opponent players, 0 means that
there is no dominance and finally, 1 means that the vicinity is dominated by our
players. Vicinity Occupancy is calculated for three objects of interest:

– Ball
– Own Goal Area
– Opponent Goal Area

The ball is the most important object in the game. Dominating the vicinity of
the ball can be interpreted as having the control of the ball since the probability
of controlling the ball increases as the number of own players in the vicinity
increases and decreases as the number of opponents in the vicinity increases.

Fig. 2. a) Occupancy in the vicinity of Ball. b) Occupancy in the vicinity of Own Goal

Dominating the vicinity of own goal is desired since it can be interpreted as
a good defensive tactic. Dominating the vicinity of opponent goal is basically



the opposite situation of occupancy of own goal case. As a result, in the ideal
case, it is desired to dominate vicinities of both ball and goals but dominating
the ball vicinity is the most important issue.

Pairwise separation Metrics
Pairwise separation is aimed to measure the degree of separation of an object

of interest with opponent team. Equation for calculation of pairwise separation
is given in Equation 3.

SObject =

∑n
i=1

∑n
j=1

∑m
k=1 separates(P i

own, P j
own, P k

opp, Object)
2

(3)

separates(P1, P2, P3, Object) =

{
1 if Line(P1, P2) intersects Line(P3, Object),
0 otherwise.

(4)

where, n is the number of own players, m is the number of opponent players,
and Pown and Popp are the sets of own and opponent players, respectively.

Fig. 3. Pairwise separation of Ball from Opponent Team: Robots pointed with light
arrows are separated from the ball

Pairwise separation depends on the assumption that if an opponent player is
separated from the object of interest, it is more likely for us to prevent it from
accessing the object of interest. For example, if the pairwise separation value for
ball is high, our chance to control the ball will also be high. Since separation
test is performed for each player and with each teammate, each tuple is counted
twice. So, the calculated separation value is divided by 2 to eliminate this double
count.

Clearance of the path between two points
Clearance metric measures the accessibility of one point from another point.

Clearance depends on the existence and positions of players and their movement
capability. It is assumed that a player has control over an area called Area of



Impact. The size and shape of area of impact depends on locomotional abilities
of the robot. For a robot with omnidirectional movement and shooting ability
with any side (for example Teambots robots or MIROSOT robots), shape of the
area of impact will be a circle.

The area of impact depends on the speed of the robot. A fast robot would
have a larger area of impact than a slower robot. The area of impact of a robot
is considered as a physical obstacle along with the body of the robot when
calculating the clearance. If the path between two points is occluded by the area
of impact of at least one opponent player, it is considered that the way between
the two points is not clear.

We calculate three clearance metrics:

– Clearance to the ball
– Clearance of ball to the opponent goal
– Clearance of ball to the teammates

Once a player reaches to the ball, there are three actions it can take:

– Shooting to the goal
– Dribbling with the ball
– Passing the ball to a teammate

Since it is assumed that the player must reach the ball before shooting or
passing, only the clearance of the ball to the opponent goal and to the teammates
are important. Sample clearance situations are shown in Figure 4.

Fig. 4. a) Clearance to the Ball. b) Clearance to the Opponent Goal for the Ball. c)
Clearance of the Ball to the Teammates

2.2 Play Level Metrics

Play level metrics tend to measure the two important issues in the soccer game:
Reachability of a position from another position and ball possession. The pro-
posed predicates isReachable(Positionfrom, Positionto) and hasBall( Player )



are calculated by using instantaneous metrics over a time period. Both isReach-
able and hasBall are boolean metrics so we need to map the output of the metric
combination from a real number to a boolean value.

isReachable Predicate
The function isReachable(Positionfrom, Positionto) returns True if the path

between points Positionfrom and Positionto is clear from obstacles (Sec. 2.1).
Since clearance metrics are instantaneous metrics and can be quite noisy, clear-
ance is calculated by examining the consecutive values of the clearance metrics.
If the path between two positions is Clear for consecutive N time-steps, isReach-
able is set to True. Contrarily, if the path between two positions is Occluded for
consecutive N time-steps, isReachable is set to False. Determining the number
N is another optimization problem. Since such an optimization is beyond the
scope of this work, we arbitrarily select N = 10 and leave finding the optimal
value of N as a future work.

hasBall Predicate
hasBall is used to check whether a certain player has the ball possession

or not. hasBall(Player) returns True if the Player has the ball possession or
not. As in the isReachable predicate, output is calculated from the values of the
metrics developed for measuring the ball possession over a number of consecutive
time-steps. We used the same value of 10 for the window size variable N for
calculating the value of the hasBall.

2.3 Game Level Metrics

Game level metrics are proposed for measuring the statistics about the game
over a long time period. All game level metrics try to measure the dominance of
the game. Three metrics are calculated in game level:

– Attack/Defense Ratio
– Ball Possession
– Score Difference

Attack/Defense Ratio
Attack/Defense Ratio (ADR) tends to measure the dominance of the game

by comparing the longest time the ball spends in our possession area in the
game field with the longest time the ball spends in opponent possession area.
Possession areas are defined as goal-centered semi-circles. The radius of the cir-
cle is a hyper-parameter and it needs some machine-learning and optimization
techniques for finding the optimal value of the radius, but we simply select the
radius of the circle as half of the field height.

The Attack/Defense Ratio is the difference of largest consecutive time-steps
that the ball is in opponent possession area and the largest consecutive number
of time-steps that the ball is in our own possession area divided by the sum of
them. Formula for Attack/Defense Ratio is given in Equation 5.

ADR =
Posown − Posopp

Posown + Posopp
(5)



This value is a real number in the interval [−1, 1]. A positive value of this metric
indicates that the ball is spending more time in the opponent possession field
than it spends in own possession field meaning that our team is more aggressive
and dominating the game.

Ball Possession
Ball Possession (BP) measures the dominance of the game by comparing

the longest time our team has the ball possession with the longest time oppo-
nent team has the ball possession. Play Level predicate hasBall is used in the
calculation of ball possession. Formula for Ball Possession is given in Equation
6.

BP =
Ballown −Ballopp

Ballown + Ballopp
(6)

where Ballown is the number of consecutive time steps that hasBall(Playerown)
is True for one of our players. Ballopp is the number of consecutive time steps
that hasBall(Playeropp) is True for one of the opponent players. A positive
value of the metric indicates that our team has the control of the ball more than
the opponent team.

Score Difference
Score difference (SD) is probably the most popular and trivial metric which

is calculated from the scores of the teams. The equation for calculating score
difference is given in Equation 7.

SD = Scoreown − Scoreopp (7)

The result is an integer indicating the dominion over game so far.

3 EVALUATING METRICS

For the evaluation of defined metrics, a total of 200 games were played with our
team against four different opponents in Teambots simulation environment [13].
In order to reveal the performance of the opponent teams in all aspects and to
eliminate ceiling and floor effects in evaluating the performance of our own team,
we have tried to use stratification in selecting the opponent teams so we choose
both weak, moderate and powerful teams as opponents.

After the games are played and the position data for the players and the
ball are recorded, each game is divided into episodes which starts with a kick-off
and ends with either a score or end of half or end of game whistle. Episodes
ending with own scores are marked as positive examples and episodes ending
with opponent scores are marked as negative examples. Episodes ending with
end of half or end of game whistle are ignored. At the end of 200 games, 81
negative and 1016 positive episodes were recorded. Each episode is then divided
into smaller sequences of time-steps that are separated by a touch (or kick)
to the ball. These sub-episodes are also marked as positive/negative examples



depending on which team has touched the ball at the end of the sub-episode.
If the ball is kicked by own team and the previous kick was performed by the
opponent team, that sub-episode is marked as a Positive example. If the ball is
kicked by opponent players and the previous kick was made by home players,
that sub-episode is marked as a Negative example. The sub-episodes that are
started and ended with the kicks of same team are ignored. Then, the marked
sub-episodes are used to evaluate metrics related to the ball possession.

3.1 Metric Validation

Proposing metrics is a challenging task but it is even harder to evaluate the
performance of a metric. We use metrics to obtain quantitative information
about the environment but how can we be sure that the metric we proposed
really measures the property it is supposed to measure. So we are confronted with
another challenging problem: Metric validation. In order to consider a metric as
informative, the metric should show the same trends in the same situations.
For example, we can propose the distance to the ball metric for assessing the
probability of getting the control of the ball. However, distance might not be the
right indicator. So we should check whether the distance metric has the same
trends in positions having the same ending (our team got the control of the ball,
or opponent team got the control of the ball). Due to noise and sudden changes
in positions of ball and other players, recorded metric data contain noise making
the observation of trends in metric data difficult. In order to extract trends in
recorded noisy data, some smoothing algorithms are applied to the recorded
data. We have tried two smoothing algorithms on the recorded metrics:

– 4253h,Twice Smoothing
– Hodrick-Prescott Filter

3.2 4253h, Twice Smoothing

In 4253h, Twice algorithm, running median smoothers with window sizes 4, 2,
5 and 3 are applied consecutively. Then Hanning operator is applied. Hanning
operator replaces each data point Pi with Pi−1

4 + Pi

2 + Pi+1
4 . Then the entire

operation is repeated [14]. Performing two or three consecutive 4253h, Twice
resulted in great reduce in noise but the trend extraction is still hard in resultant
smoothed data.

3.3 Hodrick-Prescott Filter

Hodrick-Prescott filter is proposed for extracting underlying trend in macroe-
conomic time series [15]. In the Hodrick-Prescott (HP) Filter approach, the ob-
servable time series yt is decomposed as:

yt = gt + ct (8)



where gt is a non-stationary time trend and ct is a stationary residual. Both gt

and ct are unobservable. We think yt as a noisy signal for the gt. Hence, the
problem is to extract gt from yt.

HP Filter solves the following optimization problem:

Min

{gt}T
t=1

T∑
t=1

(yt − gt)2 + λ

T∑
t=2

[(gt+1 − gt)− (gt − gt−1)]2 (9)

where λ is a weight for a signal against a linear time trend. λ = 0 means that
there is no noise and yt = gt. As λ gets larger, more weight is allocated for
the linear trend. So as λ → ∞, gt approaches to the least squares estimate of
yt’s linear time trend. Selecting the value of λ is another design problem. In our
work, we used 14400 as the value of the λ which is used to smooth monthly data
in original implementation.

Fig. 5. Smoothing: a) Raw data, b) 4253h,Twice, c) Hodrick-Prescott Filter

Figure 6.a shows the kicks in which the team with the ball possession is
changed. In Figure 6, bold spikes denotes the kicks that are performed by our
team and preceding by an opponent kick and, narrow spikes denotes the kicks
that are performed by the opponent team and preceding by an own kick. In order
to test the correlation among the sub-episodes with the same mark (positive or
negative), a straight line is fitted on metric data in the sub-episode by using
Least Squares Fitting. Then, the possible correlation between the mark of the
sub-episode and the sign of the first derivative of the fitted line (i.e. slope of the
line) is investigated. It is expected that the signs of the slopes of fitted lines on
the metric data in sub-episodes with the same mark are the same.

In Figure 6.b, fitted lines on the pairwise separation of the ball metric data
between two kicks can be seen. It is seen in the figure that the fitted lines to the
positive sub-episodes have positive slopes where the fitted lines to the negative
sub-episodes have negative slopes.

Table 1 shows that the pairwise separation of the ball metric has a positive
correlation with the sub-episode mark. Whenever the metric shows an increasing



Fig. 6. a) an example Pairwise Separation of the Ball Metric with positive and negative
kicks. b) after fitting a Least-Squares Line to the metric

Table 1. The Kick-Slope distribution for Pairwise Separation of the Ball

Own Kick Opponent Kick

Positive Trend 94 27

Negative Trend 19 50

trend, our own team performs a kick and since performing a kick requires the
ball possession, it can be said that if the pairwise separation of the ball metric
shows an increasing trend, our own team has the ball possession.

Nearly all of the metrics have some hyper-parameters that we chose arbitrar-
ily in this work. With arbitrarily selected hyper-parameters, only the pairwise-
separation metrics have shown consistent behaviors. Exploring the consistency
of the metrics with different values of hyper-parameters is left as a future work.

4 CONCLUSIONS

In this work, we have proposed a decomposition of soccer game into layers dealing
with different time resolutions, a set of metrics and a validation method for
testing the consistency (hence, the informativeness) of a metric. Some of the
metrics are novel and a metric validation method is proposed for the first time.
Although the proposed decomposition is applied on robot soccer, it is not limited
to soccer and can be adapted to any multi-robot system. Some of the major
contributions of this work can be listed as:

– Stating the metric validation problem as a challenging problem where au-
tonomous decision making systems are in use.

– Proposing a novel statistical method for addressing the metric validation
problem.



– Proposing a three-layered decomposition of the soccer game and a set of
metrics on these layers at different time resolutions.

Nearly all of the metrics have some hyper-parameters so there is a large
room for conducting machine learning based research on finding optimal values
of these hyper-parameters. Finding such hyper-parameters, developing methods
for dealing with uncertainty in real life, investigating the possibility of a spatial
decomposition of the soccer and combining metrics defined on different layers of
both spatial and temporal decompositions are left as future work.
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11. Thomas Röfer et. al. Germanteam 2006. Technical report, The GermanTeam,
2007.

12. Michael J. Quinlan, Naomi Henderson, and Richard H. Middleton. The 2006 nubots
team report. Technical report, Newcastle Robotics Laboratory, 2007.

13. Tucker Balch. Teambots, 2000. http://www.teambots.org.
14. P. R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Mas-

sachusetts, 1995.
15. R. J. Hodrick and E. C. Prescott. Postwar u.s. business cycles: An empirical

investigation. Journal of Money, Credit and Banking, 29, 1997.


