
DEVELOPING A NOVEL ROBUST MULTI-AGENT TASK ALLOCATION

ALGORITHM FOR FOUR-LEGGED ROBOT SOCCER DOMAIN

by

Çetin Meriçli

B.S. in Computer Engineering, Marmara University, 2002

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2005



ii

DEVELOPING A NOVEL ROBUST MULTI-AGENT TASK ALLOCATION

ALGORITHM FOR FOUR-LEGGED ROBOT SOCCER DOMAIN

APPROVED BY:

Prof. H. Levent Akın . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Asst. Prof. Pınar Yolum Birbil . . . . . . . . . . . . . . . . . . .

Prof. H. Işıl Bozma . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 08.07.2005



iii

ACKNOWLEDGMENTS

First of all, I would like to thank to my supervisor Prof. H. Levent Akın for his

encouragement, guidance and enthusiastic support. This thesis would not be possible

without his contributions.

People of AILab and Cerberus Team has taken place in every single moment of

this work with their valuable friendship, discussions, brilliant ideas and support so I

would like to thank all of them so much.

My appreciations goes to my sincere jury members Asst. Prof. Pınar Yolum

Birbil and Prof. H. Işıl Bozma.

I am so grateful to Hüseyin Öner, who is a tolerant boss. This thesis would not

be completed without his tolerance.

I owe so much to my family for what they did for me from the very beginning,

and for their endless love and support.

In addition, I am so grateful to my younger brother Tekin Meriçli for his contin-

uous motivation, constructive criticism and support.

Bahar Karaoğlu receives special thanks for her morale support, friendship and

remarkable discussions about the life, universe and everything.

Thanks to Rodney Brooks for poisoning a thirteen year old child with his robots

Genghis and Attila and indirectly causing this thesis to be written.

Finally, thanks to Donald Knuth for making the development of undoubtedly the

greatest word processing system ever, LATEX, possible.



iv

ABSTRACT

DEVELOPING A NOVEL ROBUST MULTI-AGENT TASK

ALLOCATION ALGORITHM FOR FOUR-LEGGED

ROBOT SOCCER DOMAIN

Multi-robot systems become more popular since a team of relatively simple robots

may achieve a complex goal more effectively than a single complex robot if a proper

design paradigm is used. Two main advantages of multi-robot systems over single

robot systems are their robustness and higher performance due to parallel execution.

Multi-robot systems have a wide application area from mine sweeping to planetary

exploration and from soccer playing to search and rescue operations in disaster areas.

Robot soccer is a good platform to test and develop multi-robot applications

because it has some physical limitations such as limited and noisy sensorial information

and noisy actuators as in the real life and it also has a highly dynamic environment.

The goal of winning the game should be decomposed into a sequence of sub-

goals and proper sequences of actions for achieving the subgoals should be selected and

refined through execution. In order to be able to select proper actions at a time, it

should be able to evaluate the current situation of the environment so we have to have

some metrics that gives quantitative information about the environment.

In this work, we first propose some metrics calculated from positions of robots

and ball on the field and select a subset of these metrics that are statistically proved

to be informative. Then, a task allocation algorithm is built on top of those metrics.

Experimental study on both metric selection and evaluation of the designed algorithm

are given.



v

ÖZET

DÖRT BACAKLI ROBOT FUTBOLU ORTAMI İÇİN YENİ

VE DAYANIKLI BİR GÖREV ATAMA YÖNTEMİ

GELİŞTİRİLMESİ

Uygun bir tasarım paradigması kullanıldığında, göreli olarak basit robotlardan

oluşan bir takım, karmaşık bir görevi tek bir karmaşık robottan daha etkin bir şekilde

yerine getirebileceğinden çoklu-robot takımları giderek popülaritelerini arttırmaktalar.

Çoklu-robot sistemlerinin tekil-robot sistemlerine göre ana avantajları sistemin hata-

lara karşı dayanıklı olması ve paralel işlemeden ötürü yüksek performans sağlanmasıdır.

Çoklu-robot sistemleri mayın temizlemeden gezegen keşiflerine, futbol oynamadan fe-

laket sonrası arama-kurtarma çalışmalarına kadar pek çok uygulama alanına sahiptir.

Robot futbolu, sınırlı ve gürültülü algılayıcı bilgisi ve gürültülü eyleyiciler gibi

fiziksel kısıtlara ve son derece dinamik değişen bir ortama sahip olduğundan, çoklu-

robot uygulamalarını geliştirmek ve test etmek için çok uygun bir ortamdır.

Oyunu kazanma amacı bir dizi alt-amaca çevrilmeli, bu alt-amaçlara ulaşabilmek

için gereken uygun eylemler seçilmeli ve oyun süresince iyileştirilmelidir. Uygun eylem-

leri seçebilmek için ortamin o anki durumunu değerlendirebiliyor olmamız, dolayısı ile

ortam hakkında nitel bilgi sağlayabilen bazı ölçütlerimiz olması gerekir.

Bu çalışmada, önce robotların ve topun sahadaki pozisyonlarından hesaplanan

bazı ölçütler tanımlayarak bu ölçütler arasından bilgilendirici olduğu istatistiksel olarak

kanıtlanmış bir altkümeyi seçeceğiz. Sonra, seçilen ölçütlerin üzerine dayanıklı bir

görev paylaşımı yöntemi yerleştireceğiz. Gerek ölçüt seçimi, gerek tasarlanan yöntemin

sınanması konularındaki deneysel çalışmalar detaylı olarak verilecektir.



vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Robot Control Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Reactive Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2. Deliberative Paradigm . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3. Hybrid Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4. Behavior-based Architectures . . . . . . . . . . . . . . . . . . . 7

2.1.4.1. Subsumption Architecture . . . . . . . . . . . . . . . . 7

2.1.4.2. Schema-Based Behaviors . . . . . . . . . . . . . . . . . 7

2.1.4.3. Potential Fields . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Multi-Robot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Robot Soccer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4. Task Allocation in Multi-Robot Systems . . . . . . . . . . . . . . . . . 12

3. PROPOSED APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Team Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Metrics for Game Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1. Instantaneous Metrics . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.1. Convex Hull Metrics . . . . . . . . . . . . . . . . . . . 19

3.2.1.2. Vicinity Occupancy . . . . . . . . . . . . . . . . . . . 20

3.2.1.3. Pairwise separation Metrics . . . . . . . . . . . . . . . 22

3.2.1.4. Clearance of the path between two points . . . . . . . 23

3.2.1.5. Distance with Respect to a Point . . . . . . . . . . . . 24

3.2.2. Play Level Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 25



vii

3.2.2.1. isReachable Predicate . . . . . . . . . . . . . . . . . . 26

3.2.2.2. hasBall Predicate . . . . . . . . . . . . . . . . . . . . . 26

3.2.3. Game Level Metrics . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3.1. Attack/Defense Ratio . . . . . . . . . . . . . . . . . . 27

3.2.3.2. Ball Possession . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3.3. Score Difference . . . . . . . . . . . . . . . . . . . . . 28

3.3. Role Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1. Objective Functions for Roles . . . . . . . . . . . . . . . . . . . 30

3.3.1.1. Goalie . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1.2. Active Defender . . . . . . . . . . . . . . . . . . . . . 30

3.3.1.3. Passive Defender . . . . . . . . . . . . . . . . . . . . . 30

3.3.1.4. Supportive Defender . . . . . . . . . . . . . . . . . . . 31

3.3.1.5. Attacker . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1.6. Supporter . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1.7. Midfielder . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4. Potential Fields for Motion Planning . . . . . . . . . . . . . . . . . . . 32

3.4.1. Goalie Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2. Passive Defender Field . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3. Active Defender Field . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.4. Supportive Defender Field . . . . . . . . . . . . . . . . . . . . . 35

3.4.5. Attacker Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.6. Supporter Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.7. Midfielder Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.8. Ball Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.9. Constraint Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5. Reactive Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6. Play Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7. Game Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1. Teambots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2. Experiments for Evaluating Metrics . . . . . . . . . . . . . . . . . . . . 48

4.2.1. Decomposition of the Game Data . . . . . . . . . . . . . . . . . 49



viii

4.2.2. Metric Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3. 4253h, Twice Smoothing . . . . . . . . . . . . . . . . . . . . . . 50

4.2.4. Hodrick-Prescott Filter . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.5. Metric Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3. Experiments for Evaluating the Algorithm . . . . . . . . . . . . . . . . 57

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



ix

LIST OF FIGURES

Figure 2.1. Subsumption Architecture . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2. Example motor schemas: (a) Obstacle avoidance and (b) Path fol-

lowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.3. An example repulsive potential field . . . . . . . . . . . . . . . . . 9

Figure 2.4. Setup configuration for MIROSOT Game . . . . . . . . . . . . . . 12

Figure 2.5. Field setup for RoboCup Legged League . . . . . . . . . . . . . . 13

Figure 3.1. Convex Hulls of two teams at a time point . . . . . . . . . . . . . 20

Figure 3.2. Occupancy in the vicinity of Ball . . . . . . . . . . . . . . . . . . 21

Figure 3.3. Occupancy in the vicinity of Own Goal . . . . . . . . . . . . . . . 21

Figure 3.4. Occupancy in the vicinity of Opponent Goal . . . . . . . . . . . . 22

Figure 3.5. Pairwise separation of Ball from Opponent Team: Robots pointed

with green arrows are separated from the ball . . . . . . . . . . . . 23

Figure 3.6. Example Areas of Impact: a) Area of Impact for an AIBO robot,

b) Area of Impact for a MIROSOT robot . . . . . . . . . . . . . . 23

Figure 3.7. Clearance to the Ball . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.8. Clearance to the Opponent Goal for the Ball . . . . . . . . . . . . 25



x

Figure 3.9. Clearance of the Ball to the Teammates . . . . . . . . . . . . . . . 26

Figure 3.10. Field division for Attack/Defence ratio calculation . . . . . . . . . 27

Figure 3.11. Potential Field definition for Goalie . . . . . . . . . . . . . . . . . 32

Figure 3.12. Potential Field definition for Passive Defender . . . . . . . . . . . 33

Figure 3.13. Potential Field definition for Active Defender . . . . . . . . . . . . 34

Figure 3.14. Potential Field definition for Supportive Defender . . . . . . . . . 35

Figure 3.15. Potential Field definition for Attacker . . . . . . . . . . . . . . . . 36

Figure 3.16. Potential Field definition for Supporter . . . . . . . . . . . . . . . 37

Figure 3.17. Potential Field definition for Midfielder . . . . . . . . . . . . . . . 37

Figure 3.18. Potential Field definition for Ball . . . . . . . . . . . . . . . . . . 38

Figure 3.19. Line Segment Fields: (a) Attractive, (b) Repulsive, (c) Left →
Right, (d) Right → Left . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.20. Potential Field definition for constraints . . . . . . . . . . . . . . . 40

Figure 3.21. Quantization of the game field into regions . . . . . . . . . . . . . 44

Figure 3.22. Specification of Counter-Attack Play . . . . . . . . . . . . . . . . 45

Figure 4.1. Smoothing: a) Raw data, b) 4253h,Twice, c) Hodrick-Prescott Filter 52

Figure 4.2. A snapshot from Metric Player . . . . . . . . . . . . . . . . . . . . 53



xi

Figure 4.3. An example Pairwise Separation of the Ball metric with all the own

and opponent kicks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.4. An example Pairwise Separation of the Ball Metric with positive

and negative kicks . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.5. After fitting a Least-Squares Line to the metric . . . . . . . . . . . 56



xii

LIST OF TABLES

Table 2.1. Robot primitives defined in terms of inputs and outputs . . . . . . 4

Table 2.2. Relationships among robotic primitives in Reactive Paradigm . . . 5

Table 2.3. Relationships among robotic primitives in Deliberative Paradigm . 6

Table 2.4. Relationships among robotic primitives in Hybrid Paradigm . . . . 6

Table 3.1. List of metrics for each time resolution . . . . . . . . . . . . . . . . 18

Table 4.1. The Kick-Slope distribution for Pairwise Separation of the Ball . . 55

Table 4.2. The Kick-Slope distribution for Vicinity Occupancy for the Ball . . 55

Table 4.3. The Kick-Slope distribution for the Density of the Convex Hull for

Our Own Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 4.4. The Kick-Slope distribution for the Density of the Convex Hull for

the Opponent Team . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.5. The Kick-Slope distribution for the Area of the Convex Hull for

Our Own Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.6. The Kick-Slope distribution for the Area of the Convex Hull for the

Opponent Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.7. Results of the games . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.8. Measured metrics for games . . . . . . . . . . . . . . . . . . . . . . 58



xiii

LIST OF ABBREVIATIONS

ADR Attack/Defense Ratio

BP Ball Possession

FIRA Federation of International Robot-Soccer Association

HP Hodrick-Prescott

MIT Massachusetts Institute of Technology

RF Radio Frequency

RIY Robot Idman Yurdu

RL Reinforcement Learning

SD Score Difference

VRML Virtual Reality Modeling Language



1

1. INTRODUCTION

Multi-robot systems are getting more popular since a team of relatively simple

robots may achieve a complex goal more effectively than a single complex robot if a

proper design paradigm is used. Two main advantages of multi-robot systems over

single robot systems are their robustness to the failures (if a decentralized architecture

is used, the system is free from single-node failure) and higher performance due to

parallel execution [1].

Multi-robot systems have a wide application area from mine sweeping to planetary

exploration and from soccer playing to search and rescue operations in disaster areas

and collapsed buildings.

Robot soccer is a good platform to test and develop multi-agent applications

because it has some physical limitations such as limited and noisy sensorial information

and limited moving capability as in the real life and it also has a highly dynamic, real-

time environment.

Multi-agent coordination is a very active research area in mobile robotics and

many different approaches have been proposed for performing task allocation in differ-

ent environments. In general, the size of the team, the overall goal and properties of

the environment play important roles on the selection and implementation of the task

allocation algorithm. For example, in a search and rescue in a disaster environment

task, time is the main criterion. On the other hand, in a soccer game, only the score is

important. An algorithm with high communication burden may not be a problem in a

team of three robots working in the same room, cleaning the floor but it does matter if

a team of a hundred unmanned trucks spread over a hundred mile-square area are on a

scout mission. Since we are dealing with the robot soccer case, we will briefly examine

the task allocation algorithms in general multi-robot problems and we will focus on

research in robot soccer domain.



2

Since it is hard to develop a controller for a single mobile autonomous robot,

it is even harder to develop a controlling and task allocation system for a team of

mobile robots. Zlot et al. [2], presented a free-market driven exploration algorithm for

mapping with multi-robot teams. Kaplan has proposed a fixed role assignment schema

for small sized robot soccer teams [3]. CMPack’02 Legged Robot Soccer Team from

Carnegie-Mellon University used a bidding mechanism for dynamic role assignment in

a game [4]. Kose et al. presented a task allocation algorithm based on free-market

approach [5]. In this work, we raised the question whether it is possible to develop

a robust, immune to single node failures and quite noisy sensory information and

computationally and communicationally cheap task allocation algorithm for a highly

dynamic environment like robot soccer domain and we have tried to find an answer to

this question.

The motivation behind this thesis is to explore the possibility of implementing a

task allocation algorithm for a robot soccer team that is robust, flexible, allowing both

low level reactive behaviors and high level (game level) strategies to be defined. Also,

exploration of possibility to define a set of metrics that can evaluate the situation of

soccer game in different hierarchical resolutions and exploration of the possibility to

propose a method for statistical validation of metric informativeness.

A very brief information about robots, mobile robots and multi-robot systems is

given in the Chapter 2. Basics of behavior-based (or, bottom-up approach) robotics,

motor schemas and use of potential fields in mobile robot navigation are discussed and

brief information about multi-robot teams are presented.

In Chapter 3, first the metric definition and verification processes are explained

in high detail. Then, proposed three-layered approach to soccer strategy and low level

behavior definition is presented. The defined roles for players and objective functions

measuring the fitness degree of a player to a certain role are discussed. Finally, the

potential field definitions for low level behaviors are given.

Chapter 4 contains information about the setting and performing experiments



3

both in simulator and on physical robots.

Finally, we conclude in Chapter 5 by summarizing the work done and pointing

to possible future work.



4

2. BACKGROUND

Mobile robot control and multi-agent task allocation problems are very active

research areas and many different approaches have been proposed for both single-agent

and multi-agent control of a robot / robot team. In this section, first traditional single-

agent robot control paradigms are examined. Then a literature survey about multi-

robot systems is presented. Finally, detailed information about robot soccer domain is

presented and different robot soccer organizations and leagues are examined.

2.1. Robot Control Paradigms

Robot control paradigms are often described by the relationship among the three

commonly accepted primitives of robotics:

• Sense

• Plan

• Act

Functions taking in information from robot’s sensors are considered in the Sense

category. Functions taking in information from either the sensors or internal knowledge

of the robot and produces one or more tasks to perform falls in the Plan category.

Finally, functions producing output commands to robot’s actuators are in the Act

category [6].

Table 2.1. Robot primitives defined in terms of inputs and outputs

Robot Primitives Input Output

Sense Sensor Data Sensed Information

Plan Information (Sensed and/or cognitive) Directives

Act Sensed information or directives Actuator commands



5

2.1.1. Reactive Paradigm

Reactive architectures [6] simply ignore the Plan phase and use the outputs of

Sense layer as the inputs of Act layer (Table 2.2). Connecting sensory input to actu-

ation layer with a very low computational overhead allows the robot to respond the

changes in its environment very quickly. Although the output of reactive controllers

are impressive, it was quickly realized that completely ignoring the planning part is

not suitable for general purpose robots. Reactive architectures have many advantages

such as fast response time, low memory usage and using the world as its own model

(no abstract internal world modelling is required).

Table 2.2. Relationships among robotic primitives in Reactive Paradigm

2.1.2. Deliberative Paradigm

Deliberative Architectures are also known as “Hierarchical Paradigm” or “Top-

down Architectures” [1]. In a deliberative architecture, robot senses the world through

Sense layer, constructs an internal model of the worlds by using both sensory informa-

tion and its knowledge base through Plan layer, and finally acts upon the directions

generated by planning layer through Act layer. The major advantage of the deliberative

paradigm is allowing the robot to act strategically based upon a specified goal. The

major disadvantages are high computational and memory requirements, responsing

slowly and infrequently, and possibility of failure in case of losing the synchronization

between internal world model and real world [7]. Also, deliberative architectures suf-

fers from the Closed World Assumption (Internal world model of the robot contains

everything the robot needs to know, so there can be no surprises).



6

Table 2.3. Relationships among robotic primitives in Deliberative Paradigm

2.1.3. Hybrid Paradigm

The Hybrid Paradigm [1] combines desirable properties of both reactive and de-

liberative paradigms in a way that the robot uses planning to decompose the task into

proper subtasks and determines the appropriate behaviors for accomplishing them.

Then, behaviors start executing according to reactive paradigm. This paradigm is of-

ten referred as Plan, Sense-Act, meaning that planning is done as one step and then

sense-act coupling is executed at once. Sense layer in the hybrid paradigm is a mixture

of reactive and deliberative paradigms. Sensor data are used by behaviors, but are also

available for the planning layer. Combination of deliberative and reactive paradigms

requires a third layer. This third layer is named according to the state organization

algorithm it uses. The ones containing a memory about the past are called Sequencer

while the ones predicting the future are called Deliberators [8, 9]. Although the hybrid

approach solves the major pitfalls of deliberative and reactive paradigms, it is quite

challenging to design an appropriate middle layer.

Table 2.4. Relationships among robotic primitives in Hybrid Paradigm



7

2.1.4. Behavior-based Architectures

In Behavior-based systems [1, 6], there is a set of sensor-actuator couplings called

Behaviors and computation is distributed over these behaviors. Output action is de-

termined according to a behavior combination algorithm. There are many different

behavior combination algorithms such as cooperation based algorithms, competition

based algorithms and subsumption algorithm [1, 10]. Behavior-based architectures

performs best when the detailed and accurate model of the real world is not available.

2.1.4.1. Subsumption Architecture. The Subsumption Architecture was developed by

Brooks at MIT Artificial Intelligence Laboratory in mid-80’s [10]. In the subsumption

architecture, there is a hierarchical organization of behaviors in which the outcome

of a behavior at a higher level can subsume the outcomes of the behaviors in lower

hierarchical levels. Higher level behaviors may access the lower level behaviors but lower

level behaviors are not aware of the higher levels. Behaviors decide when to become

active according to the sensor readings. Since the philosophy of reactive architectures

is “The world is its own model”, there is no internal world model or any kind of

abstraction based on sensory information.

Figure 2.1. Subsumption Architecture

2.1.4.2. Schema-Based Behaviors. Use of schema theory is another widely used ap-

proach in behavior-based architectures [1]. In the schema-based approach, the behav-

iors consist of perceptual and motor schemas and a perceptual schema is embedded

within each motor schema. In perceptual schemas, the way of processing the sensor

data is encoded and in motor schemas, response is represented in a uniform format.



8

The final action of the robot is determined by performing a weighted vector sum of

individual behaviors.

Figure 2.2. Example motor schemas: (a) Obstacle avoidance and (b) Path following

2.1.4.3. Potential Fields. The major drawback of motor schemas is that the entire

schema for the environment must be created at once. Since in real world applications,

the environment is very dynamically changing, the motor schemas have to be recal-

culated continuously. For large environments, the computational requirement of this

recalculation is usually not affordable for the robots. In the potential field approach

[12], the resulting vector is obtained for only the point at which the robot is located on.

As in motor schemas, attractive and repulsive points are used for directing the robot.

Potential field theory from electromagnetics is borrowed for formulating the calcula-

tion of the result vector for a given point with respect to given attractive and repulsive

points. Although the force is inversely proportional to the square of the distance, the

exact function describing the relation should be selected carefully since the result may

largely be affected.

Figure 2.3 shows the 3D plot of the function for a repulsive potential field. The

function is given in Equation 2.1.



9

Figure 2.3. An example repulsive potential field

F =
1

1 + ek x distance
(2.1)

where, k is a coefficient determining the sharpness of the function and distance is the

euclidean distance to the center of the repulsive field [3]. Value of the k is 5 for Figure

2.3.

2.2. Multi-Robot Systems

The study of multiagent systems focuses on systems in which many intelligent

agents interact with each other. The agents are considered to be autonomous entities,

such as software programs or robots. There are many different issues to be consid-

ered in order to characterize a team of agents. These considerations can be listed as

reliability, organization, communication, spatial distribution, congregation, and per-

formance. Arkin discussed the different properties of multi-robot teams varying from

social behavior to inter-robot communication and from performance issues to etholog-



10

ical considerations [1].

• Reliability: If the system can act correctly in a given situation over time, then

the system can be considered to be reliable.

• Social Organization: Heterogeneous societies should be developed if there is

a demand for specialized skills. Some examples can be multilevel hierarchical

structures, loosely structured mobs, and dominance systems.

• Communication: There are two major aspects in communication. One of them

is information content, which can be described as the limit of the messages in

societies. For example, for ants, there are ten to twenty different chemical signals.

The other aspect of communication is mode. In different animal societies different

range of communication mechanisms including chemical, tactile, infrared, and

electric communication are used.

• Spatial Distribution: It is very important for activities such as foraging for

food. If a resource is evenly distributed, it is better for the agents to form indi-

vidual, non-overlapping foraging ranges instead of roosting and foraging together

(Horn’s Principle of Group Foraging [11]).

• Congregation: There are several strategies to keep the society remain together,

such as defining a colony location as a predefined meeting point, generation of a

loud noise by a number of similar agents (lekking), distinctive calls, and specific

assembly calls by a single agent.

• Performance: Specific metrics are required to effectively evaluate societal sys-

tem performance. Speedup is one of the useful metrics that measure the per-

formance of a team of N robots relative to N times the performance of a single

robot.

A complete taxonomy capable of categorizing the variety of multiagent robotics

systems is proposed in [13]. Team size (number of robots), communication range

(each robot’s ability to communicate directly with other team members), communi-

cation topology (the pathways by which communication can occur), communication

bandwidth (amount of communication available), team reconfigurability (flexibility

regarding the structure and organization of the team), team unit processing ability



11

(underlying computational model used), and team composition (composition of agents

themselves, i.e. homogeneous or heterogeneous) are the proposed lines for characteriz-

ing teaming.

2.3. Robot Soccer

In robot soccer, teams of robots, that are capable of seeing and moving play

matches against each other, and the team with the highest goal score wins the match

as in real soccer. In order to do this, the player robots must detect their location, the

goals, the ball, the members of their team and the opponent team members (optional

for high level planning), and place the ball in the opponent team’s goal to score. A

robot is typically expected to find its own location using the landmarks (artificial or

natural) in the field, and then use this information to find the location of the ball and

goal.

Federation of International Robot-soccer Association (FIRA) is an association

for international robot soccer [14] where wheeled and legged robots compete in the

official games. MIROSOT is one of the categories for these robots. In MIROSOT,

robots are controlled by a central system via RF signals. Since the environment is very

dynamic, a complex controller design is required to perform sophisticated tasks like

team organization.

MIROSOT small-size league is a centralized system. Configurations consists of

a ceiling-mounted camera having the ability to cover entire field, a host computer

and an RF interface for sending commands to the robots. After processing the image

obtained from the camera, the controller computes the proper actions (in wheeled case,

velocities for left and right wheels) for each robot. The produced commands are then

transmitted to the robots via RF. The setup configuration for MIROSOT game can be

seen in Figure 2.4.

The RoboCup organization is an international initiative which aims to build a

soccer team of fully autonomous humanoid robots beating the last human world soccer



12

Figure 2.4. Setup configuration for MIROSOT Game

champion by the year 2050 [15].

Sony four-legged league is one of the subdivisions of the RoboCup in which two

teams each consisting of four Sony AIBO robotic dogs compete against each other.

The game area is 6m by 4m and four unique bi-colored beacons are placed in order

to provide information for localization. Robots are fully autonomous so any human

intervention other than placing the robots on the field, any off-board computation and

providing external data such as image from overhead camera is prohibited. Field setup

can be seen in the Figure 2.5. This thesis is a part of the Cerberus Team [16] competing

in this league.

2.4. Task Allocation in Multi-Robot Systems

Zlot et al. [2], presented a free-market driven exploration algorithm for mapping

with multi-robot teams. In their work, robots continuously communicate among them-

selves for exchanging the calculated cost values for exploration of certain portions of

the area. The robot with the lowest exploration cost is assigned to that portion of the

area. If a robot proposes a lower cost for exploration of a portion of the area that is

already assigned to a robot, the owner sells the task to that robot. In market-driven

approach, the overall goal is to maximize profit by minimimizing the overall cost since

the profit is calculated as profit = payoff − cost and it is assumed that a fixed payoff



13

Figure 2.5. Field setup for RoboCup Legged League

is offered for achieving the overall goal of the team.

Kaplan has proposed a fixed role assignment schema for small sized robot soccer

teams [3]. Kaplan used potential fields for behavior encoding. Field borders and own

goal area are represented with repulsive fields where the ball and opponent goal are

represented with attractive potential fields. Then, the output vectors of corresponding

potential fields are summed to determine final movement direction and speed of the

robot. The metric they used for evaluating the objective functions to assign roles was

the distance to the ball. The major drawbacks of their approach are use of primitive

metrics and not considering another action than shooting to the opponent goal.

CMPack’02 Legged Robot Soccer Team from Carnegie-Mellon University used a

bidding mechanism for dynamic role assignment in a game [4]. They used a set of

objective functions for calculating the fitness of players to the roles and then the fittest

player is assigned to the role. They used a time threshold for preventing oscillations

in role assignments which often occurs due to misreadings obtained from sensors and

partial observability of the environment. When a player is assigned to a role, it keeps

that role at least for a certain amount of time.



14

Kose et al. presented a task allocation algorithm based on free-market approach

[5]. In their work, they defined a set of roles that a player can be assigned in the game.

They defined five roles:

• Goalie

• Defender

• Primary Attacker

• Secondary Attacker

• Tertiary Attacker

The Goalie role is assigned to one player at the beginning of the game and is

not changed throughout the game since game rules strictly separates the goalie from

the other players. Then, each player evaluates its fitness to each dynamic role by

calculating a cost function for accomplishing the main task of that role. Calculated

costs are then exchanged with the teammates and sorted. Since each player has the

cost list for the entire team, they select the appropriate role rather than being assigned

to that role. For example, the main task of the primary attacker is to score so the

player with the lowest attacking cost (hence, the highest fitness) is assigned to the

Primary Attacker role. Once a player is assigned to a role, there are two alternatives:

The robot may open an auction to sell its role, or the robot may perform an internal

auction to select the best behavior to be performed. If another player announces a

lower cost for a task, then the current owner of the task sells it to the player with the

cheaper cost. In this work, two behaviors for the players are defined: Shoot or Pass.

But, the objective functions for these behaviors are different for each role. They used

the low level potential field definitions of Kaplan [3] for solving the motion planning

problem.

In both role assignment and behavior selection phases, objective functions con-

sisting of some metrics are used to evaluate the fitness of a robot to either a role or to

a behavior. Kose and her colleagues used the following metrics:

• Distance to the ball



15

• Orientation with respect to ball

• Clearance to the ball (i.e. the level of reachability of a player to the ball)

• Distances to the own and opponent goals

• Orientations to the own and opponent goals

• Clearances to the own and opponent goals (i.e. the level of reachability of a player

to the own and opponent goals)

The cost functions they used to evaluate fitness values are weighted sums of the

metrics above. For example, attacking cost consist of distance to the ball, clearance to

the ball and orientation to the ball. The weights of the metrics are handcrafted.

Kose et al. have discussed an evolutionary optimization of the weights of the

metrics in cost functions in their next paper [17]. Also, they allowed that more than one

player can be assigned to same role. They argued that the use of genetic algorithms to

determine contributions of metrics to the cost functions resulted in a better performance

and the optimized team has outperformed it’s handcrafted predecessor.

In Kose et al. [18], a Q(λ) learning algorithm replaces the role assignment algo-

rithm in it’s predecessors. They used a total of 33 parameters for state representation.

They also mentioned the importance of opponent selection in training of adaptive algo-

rithms like RL. They used moderate opponents so that both attack and defense skills

can be learned in equal opportunity.

In Tatlidede et al. [19], Q(λ) learning is used for policy learning and Cerebellar

Model Articulation Controller (CMAC) is used for function approximation and state

generalization. For the low level behaviors, Kaplan’s potential field definitions for robot

soccer [3] are used.



16

3. PROPOSED APPROACH

The proposed approach for role assignment and task allocation is presented in

this section. The section starts with the explanation of the proposed three-layered

architecture followed by the metric definition for evaluating the game in different time

resolutions. After discussing the proposed metrics for three different time resolutions,

proposed Plays and methods for game level strategy determination are presented.

3.1. Team Architecture

Due to the highly dynamic nature of the robot soccer and the necessity of very

short response times, the researchers are forced to use reactive architectures rather than

deliberative architectures in robot soccer players and teams. On the other hand, game

strategies and soccer tactics play key roles in the results of the games and neither high

level game strategies like changing the distribution of the players on the field according

to the strength of the opponent team nor according to the current score in the game

can be handled in a reactive system. Both tactics and game strategies are distributed

over time and requires more deliberation. In order to be able to use high level soccer

tactics and game level stragegies without sacrificing from the quick response time of

the reactive architectures, we divided the architecture into three layers in which the

game is evaluated in three different time resolutions.

• Reactive Layer : Works with the shortest time intervals (in each camera frame

or in each time-step) at the bottom of the system. Reactive layer deals with

instantaneous information and does not use a history of sensory information.

This is the layer where sensory data is obtained and motion plan is generated.

The layer on top of the reactive layer is the play layer.

• Play Layer : Is the deliberative part of the system and allows us to define tactics

that can be performed in a long amount of time (i.e. performing counter-attack,

attack, etc.).

• Game Layer : Game layer is on top of the other layers for defining team and



17

game level offensive / defensive level. The decided game strategy is applied by

modifying the motion plan generated by the play layer or the reactive layer.

Each layer uses the information available in its time resolution. For example, the

reactive layer deals only with the information in a snapshot of the environment, while

the game layer uses the information over a long time period in order to make decision

about the game strategy.

3.2. Metrics for Game Evaluation

Both the individual robots and the entire team should make decisions about the

game strategy, selecting appropriate play or selecting roles and behaviors. In order to

evaluate the situation and compute the fitness for roles / behaviors / game strategies

to be selected, we need to measure some metrics in the environment that can be

quantitatively expressed and having the same trends in the same situations so that we

can build objective functions out of these metrics.

The most primitive information we can estimate in the environment is the position

information of players and the ball so we defined a set of metrics calculated from the

position information for different time resolutions.

An example soccer metric would be the distance of the ball to the opponent goal

area. One can say that a team should try to keep this metric as small as possible in

order to be able to score and avoid possible opponent scores. The metric is given in

Equation 3.1.

Distball(goal) =
√

(ballx − goalx)2 + (bally − goaly)2 (3.1)

where, ballx and bally are coordinates of the ball and goalx and goaly are coordinates

of the goal.



18

We propose metrics for three different time resolutions in game:

• Instantaneous Metrics

• Play Level Metrics

• Game Level Metrics

Table 3.1 shows a list of the defined metrics for each time resolution.

Table 3.1. List of metrics for each time resolution

Time Resolution Metric Name

Instantaneous Density of the Convex Hull for Own Team

Density of the Convex Hull for Opponent Team

Area of the Convex Hull for Own Team

Area of the Convex Hull for Opponent Team

Vicinity Occupancy for the Ball

Vicinity Occupancy for the Own Goal Area

Vicinity Occupancy for the Opponent Goal Area

Pairwise Separation for the Ball

Clearance to the Ball

Clearance of the Ball to the Opponent Goal

Clearance to the Ball to the Teammates

Distance between two points

Play Level isReachable

hasBall

Game Level Attack / Defense Ratio

Ball Possession

Score Difference

3.2.1. Instantaneous Metrics

Instantaneous metrics are calculated from one-step position information. These

metrics are used for the evaluation of the objective functions for role assignment. The



19

ball is the most important object in the soccer game and getting control of the ball is

the most important sub-task. So, most of the metrics are proposed for evaluating the

chance of getting control of the ball.

3.2.1.1. Convex Hull Metrics. Convex Hull of a set of points is defined as the smallest

convex polygon in which all of the points in the set lies. In an analogous manner, by

subsituting points with the players in the soccer, we obtain a new concept: Convex

Hull of a Team. We propose two metrics involving the convex hull of a team:

• The Area of Convex Hull tends to measure the degree of spread of the team over

the field. The value of this metric increases as the team members are scattered

across the field.

• Density of Convex Hull is applied only if the ball falls within the convex hull.

The formal definition of the density is given in Equation 3.2.

Density =

∑N
i=1

√
(Xplayer(i) −Xball)2 + (Yplayer(i) − Yball)2

N
(3.2)

where, N is the number of players on the corners of the convex hull.

The density value is calculated only if the ball falls within the convex hull. If the

ball falls outside of the convex hull, then the value of the metric is 0. The probability

of the ball falling within the convex hull increases as the area of convex hull increases

and it is expected that if the ball falls within the convex hull, the probability of getting

the control of the ball increases. On the other hand, it is expected that the probability

of getting the control of the ball increases as the density of the convex hull increases.

But, since the values of the density and the area are negatively correlated (i.e.,

density decrease as the area increase), either one of the metrics is not useful, or there

is an equilibrium point where both metrics are increasing the probability of getting the



20

control of the ball.

Figure 3.1. Convex Hulls of two teams at a time point

3.2.1.2. Vicinity Occupancy. Vicinity Occupancy measures the ratio of the teams play-

ers to the opponent players within a vicinity of the object of interest. The formal

definition of the vicinity occupancy is given in Equation 3.3.

Occupancy =
Pown − Popp

Pown + Popp

(3.3)

where, Pown is the number of own players in the vicinity of the object of interest, Popp

is the number of opponent players in the vicinity, and P is the total number of players

in the vicinity. The result is a real number in the interval [−1, 1] where −1 means that

the vicinity is dominated by the opponent players, 0 means that there is no dominance

and finally, 1 means that the vicinity is dominated by our players. Vicinity Occupancy

is calculated for three objects of interest:

• Ball

• Own Goal Area

• Opponent Goal Area

The ball is the most important object in the game. Dominating the vicinity of



21

the ball can be interpreted as having the control of the ball since the probability of

controlling the ball increases as the number of own players in the vicinity increases and

decreases as the number of opponents in the vicinity increases.

Figure 3.2. Occupancy in the vicinity of Ball

Dominating the vicinity of own goal is desired since it can be interpreted as a

good defensive tactic. If the opponent players can be kept away from our goal, their

chance of scoring will be decreased.

Figure 3.3. Occupancy in the vicinity of Own Goal

Dominating the vicinity of opponent goal is basically the opposite situation of

occupancy of own goal case. Domination is desired in this case since if the number of

our players are greater than the number of opponent players in the vicinity of opponent

goal, our chance to score is increased.



22

Figure 3.4. Occupancy in the vicinity of Opponent Goal

As a result, in the ideal case, it is desired to dominate vicinities of both ball and

goals but dominating the ball vicinity is the most important issue.

3.2.1.3. Pairwise separation Metrics. Pairwise separation is aimed to measure the de-

gree of separation of an object of interest with opponent team. Equation for calculation

of pairwise separation is given in Equation 3.4.

SObject =

∑n
i=1

∑n
j=1

∑m
k=1 separates(P i

own, P
j
own, P

k
opp, Object)

2

(3.4)

separates(P1, P2, P3, Object) =





1 if Line(P1, P2) intersects Line(P3, Object),

0 otherwise.

(3.5)

Pairwise separation depends on the assumption that if an opponent player is

separated from the object of interest, it is more likely for us to prevent it from accessing

the object of interest. For example, if the pairwise separation value for ball is high,

our chance to control the ball will also be high. Since separation test is performed for

each player and with each teammate, each tuple is counted twice. So, the calculated



23

Figure 3.5. Pairwise separation of Ball from Opponent Team: Robots pointed with

green arrows are separated from the ball

separation value is divided by 2 to eliminate this double count.

3.2.1.4. Clearance of the path between two points. Clearance metric measures the ac-

cessibility of one point from another point. Clearance depends on the existence and

positions of players and their movement capability. It is assumed that a player has con-

trol over an area called Area of Impact. The size and shape of area of impact depends

on locomotional abilities of the robot. For a robot with omnidirectional movement and

shooting ability with any side (for example Teambots robots or MIROSOT robots),

shape of the area of impact will be a circle. Two example areas of impact can be seen

in Figure 3.6.

Figure 3.6. Example Areas of Impact: a) Area of Impact for an AIBO robot, b) Area

of Impact for a MIROSOT robot



24

The size of the area of impact depends on the speed of the robot. A fast robot

would have a larger area of impact than a slower robot. The area of impact of a robot is

considered as a physical obstacle when calculating the clearance. If the path between

two points is occluded by the area of impact of at least one opponent player, it is

considered that the way between the two points is not clear.

We calculate three clearance metrics:

• Clearance to the ball

• Clearance of ball to the opponent goal

• Clearance of ball to the teammates

Clearance to the ball is related with the accessibility of the ball without an op-

ponent interrupt. If the path to the ball is clear, it means that there is no opponent

player nearby to prevent us from reaching the ball so it is highly probable that our

player will get the control of the ball.

Once a player reaches to the ball, there are three actions it can take:

• Shooting to the goal

• Dribbling with the ball

• Passing the ball to a teammate

Since it is assumed that the player must reach the ball before shooting or passing,

only the clearance of the ball to the opponent goal and to the teammates are important.

Sample clearance situations are shown in Figures 3.7 - 3.9.

3.2.1.5. Distance with Respect to a Point. Considering the distance of a point to an-

other point is one of the commonly used metrics in task allocation algorithms. We use

distances of players to ball and ball to goals. distance(Pos1, Pos2) is calculated as in



25

Figure 3.7. Clearance to the Ball

Figure 3.8. Clearance to the Opponent Goal for the Ball

Equation 3.6.

distance(Pos1, Pos2) =
√

(xPos1 − xPos2)
2 + (yPos1 − yPos2)

2 (3.6)

3.2.2. Play Level Metrics

Play level metrics tend to measure the two important issues in the soccer game:

Reachability of a position from another position and ball possession. The proposed

predicates isReachable(Positionfrom, Positionto) and hasBall( Player ) are calculated



26

Figure 3.9. Clearance of the Ball to the Teammates

by using instantaneous metrics over a time period. Both isReachable and hasBall are

boolean metrics so we need to map the output of the metric combination from a real

number to a boolean value.

3.2.2.1. isReachable Predicate. isReachable predicate uses the clearance metrics as

the input. isReachable(Positionfrom, Positionto) returns True if the path between

Positionfrom and Positionto is clear from obstacles (Sec. 3.2.1.4). Since clearance

metrics are instantaneous metrics and can be quite noisy, clearance is calculated by

examining the consecutive values of the clearance metrics. If the path between two

positions is Clear for consecutive N time-steps, isReachable is set to True. Contrarily,

if the path between two positions is Occluded for consecutive N time-steps, isReachable

is set to False. Determining the number N is another optimization problem. Since such

an optimization is beyond the scope of this work, we arbitrarily select N = 10 and leave

finding the optimal value of N as a future work.

3.2.2.2. hasBall Predicate. hasBall is used to check whether a certain player has the

ball possession or not. hasBall(Player) returns True if the Player has the ball pos-

session or not. As in the isReachable predicate, output is calculated from the values of

the metrics developed for measuring the ball possession over a number of consecutive

time-steps. We used the same value of 10 for the window size variable N for calculating



27

the value of the hasBall.

3.2.3. Game Level Metrics

Game level metrics are proposed for measuring the statistics about the game over

a long time period. All game level metrics try to measure the dominance of the game.

Three metrics are calculated in game level:

• Attack/Defense Ratio

• Ball Possession

• Score Difference

3.2.3.1. Attack/Defense Ratio. Attack/Defense Ratio (ADR) tends to measure the

dominance of the game by comparing the longest time the ball spends in our possession

area in the game field with the longest time the ball spends in opponent possession

area. Possession areas are defined as goal-centered semi-circles. The radius of the circle

is a hyper-parameter and it needs some machine-learning and optimization techniques

for finding the optimal value of the radius, but we simply select the radius of the circle

as half of the field height.

Figure 3.10. Field division for Attack/Defence ratio calculation

The Attack/Defense Ratio is the difference of largest consecutive time-steps that

the ball is in opponent possession area and the largest consecutive number of time-steps

that the ball is in our own possession area divided by the sum of them. Formula for



28

Attack/Defense Ratio is given in Equation 3.7.

ADR =
Posown − Posopp

Posown + Posopp

(3.7)

This value is a real number in the interval [−1, 1]. A positive value of this metric

indicates that the ball is spending more time in the opponent possession field than it

spends in own possession field meaning that our team is more aggressive and dominating

the game.

3.2.3.2. Ball Possession. Ball Possession (BP) measures the dominance of the game

by comparing the longest time our team has the ball possession with the longest time

opponent team has the ball possession. Play Level predicate hasBall is used in the

calculation of ball possession. Formula for Ball Possession is given in Equation 3.8.

BP =
Ballown −Ballopp

Ballown + Ballopp

(3.8)

where Ballown is the number of consecutive time steps that hasBall(Playerown) is

True for one of our players. Ballopp is the number of consecutive time steps that

hasBall(Playeropp) is True for one of the opponent players. The result is a real number

in the interval [−1, 1]. A positive value of the metric indicates that our team has the

control of the ball more than the opponent team. This can be interpreted as our team

is dominating the game.

3.2.3.3. Score Difference. Score difference (SD) is calculated from the scores of the

teams. Since the aim is to win the game (having scored more than opponents and

preventing opponents from scoring against us), the difference of scores gives us the

information about the current situation of the game. Score difference is given in (3.9).



29

SD = Scoreown − Scoreopp (3.9)

The result is an integer indicating the dominion over game so far. A positive

value indicates that our team is closer to win the game than the opponent where a

negative value means the opposite.

3.3. Role Assignment

The role assignment is done in the reactive layer according to the objective func-

tions of instantaneous metrics. Seven roles are defined:

• Goalie : Goalie role is assigned to a player at the beginning of the game and

is not changed throughout the game.

• Passive Defender : The player which is both the nearest to the line between

ball and own goal and near to own goal is assigned to this role. The passive

defender gets a position on the line between the ball and center of the own goal

area, on the center of that line.

• Active Defender : Aims to challenge the opponent player possessing the ball

and try to get the control of the ball. The player which is both nearest to the

line between ball and own goal, and nearest to the ball is assigned to this role.

• Supportive Defender : The aim of this role is to estimate the possible

opponent player that the ball owning opponent player would pass the ball and

hence, it tries to intercept the ball.

• Attacker : This is the player with the ball. It tries to dribble the ball to a

position suitable for shooting, shoots the ball or passes the ball to a teammate

at a better location.

• Supporter : The player in this position tries to get a position where an

unsuccessful shoot / pass attempt would causes the ball to move to.

• Midfielder : The player in this position tries to get a position in a way that



30

increases the chance of keeping the control of the ball if primary attacker loses

the ball due to an encounter with opponent team, due to an unsuccessful action

(dribble/pass/shoot).

Since there are seven defined roles but only four players, some sort of mutual

exclusion should be applied among the roles. Each team should have one goalie so we

consider the goalie role as statically assigned to a player. For the remaining six roles,

following criterion is checked:

• If our team has the ball (checked using hasBall predicate), players are evaluated

for Attacker, Supporter and Midfielder roles.

• If opponent team has the ball, players are evaluated for Passive Defender, Active

Defender and Supportive Defender.

3.3.1. Objective Functions for Roles

3.3.1.1. Goalie. Since Goalie role is assigned statically at the beginning of the game

and do not change throughout the game, there is no objective function for measuring

the fitness of player to that role.

3.3.1.2. Active Defender. If the own team does not have the ball possession, The

player which is nearest to the ball is assigned to Active Defender role.

ObjActiveDefender =
√

(xPlayer − xBall)2 + (yPlayer − yBall)2 (3.10)

3.3.1.3. Passive Defender. If the own team does not have the ball possession, The

player which is nearest to the center of own goal is assigned to the Passive Defender

role.



31

ObjPassiveDefender =
√

(xPlayer − xOwnGoal)2 + (yPlayer − yOwnGoal)2 (3.11)

3.3.1.4. Supportive Defender. Assignment of the supportive defender also depends on

a set of criteria. After the active and passive defenders are assigned, if the remaining

player is in its own half of the field, it is directly assigned to the supportive defender

role. If the remaining player is in the opponent half and it has a high chance of score

(according to the objective function of the shooting action), it is assigned to midfielder

position for a possible counter-attack case.

3.3.1.5. Attacker. If our team has the ball possession, the player nearest to the ball is

assigned to Attacker role.

ObjAttacker =
√

(xPlayer − xBall)2 + (yPlayer − yBall)2 (3.12)

3.3.1.6. Supporter. Since the supporter gets a position symmetrical to the attacker

with respect to the ball, the player nearest to the supporter point is assigned to the

Supporter role.

xs = xa (3.13)

ys = yb ± |yb − ya| (3.14)

ObjSupporter =
√

(xp − xs)2 + (yp − ys)2 (3.15)

where, xa and ya are the coordinates of the Attacker, xs and ys are the coordinates of

the supporter point, xp and yp are the coordinates of the player being evaluated, and



32

yb is the Y coordinate of the ball.

3.3.1.7. Midfielder. After the Attacker and Supporter roles are assigned, the remaining

player is directly assigned to the Midfielder role

3.4. Potential Fields for Motion Planning

In our approach, we used potential fields for low level motion planning. Each role

and important objects have potential functions based on their properties. For example,

the desired positions for the robots in different roles are represented with an attractive

field located on the desired point. The obstacles are represented with repulsive fields.

In our case, obstacles are field borders and own goal area (since it is prohibited for the

players to spend more than three seconds in their goal area).

3.4.1. Goalie Field

Goalie tends to stay on the straight line between the middle of the goal and the

ball and in front of the goal line. Formulation of goalie field is given in Figures 3.11

and 3.16.

Figure 3.11. Potential Field definition for Goalie



33

k

l
=

k′

l′
(3.16)

y = yGoalTop + k′ (3.17)

x = RobotRadius (3.18)

where k is the distance from ball to the top side of own goal, l is the distance from

the ball to the bottom side of the own goal, k′ is the distance between top side of own

goal and the intersection point of the straight line between the ball and own goal line

which passes through the center of the goalie.

3.4.2. Passive Defender Field

Passive defender field is similar to goalie field in some aspects. The location of

the attractive point is on the line between the ball and the center of own goal and at

the middle point of the line. Formulation for passive defender field is given in Figure

3.12 and Equation 3.19.

Figure 3.12. Potential Field definition for Passive Defender



34

x =
(xBall + xGoalCenter)

2
(3.19)

y =
(yBall + yGoalCenter)

2
(3.20)

(3.21)

where xBall and yBall are coordinates of the ball and xGoalCenter and yGoalCenter are

coordinates of the center point of own goal.

3.4.3. Active Defender Field

Active defender tries to gain the ball possession by challenging aggressively for

the ball on the opponent attacker. Active defender field consists of an attractive po-

tential field in which the center is the ball position. Since the opponent attacker will

probably try to shoot the ball to our goal, a circular alignment field directed towards

the opponent attacker is used to increase the possibility of interception. Definition of

active defender field is given in Figure 3.13.

Figure 3.13. Potential Field definition for Active Defender



35

3.4.4. Supportive Defender Field

Supportive Defender aims to intercept the ball by estimating the possible op-

ponent player that the opponent attacker would pass the ball and taking position

accordingly on the line between the ball and candidate pass receiver and on the center

of that line. The second nearest opponent player in our half of the field is considered

as the candidate player. Formulation for supportive defender field is given in Figure

3.14 and Equation 3.22.

Figure 3.14. Potential Field definition for Supportive Defender

x =
(xBall − xCandidate)

2
(3.22)

y =
(yBall − yCandidate)

2
(3.23)

where xBall and yBall are coordinates of the ball and xCandidate and yCandidate are coor-

dinates of the candidate opponent player.

3.4.5. Attacker Field

The attacker always moves towards the ball and tries to get aligned in a way that

the accuracy of dribbling / passing / shooting to a certain position is increased. The



36

attacker field consists of an attractive potential field located on the ball and a circular

ball field that has a direction pointing to the destination position. The definition of

attacker field is given in Figure 3.15 and Equation 3.24.

Figure 3.15. Potential Field definition for Attacker

x = xBall (3.24)

y = yBall (3.25)

where, xBall and yBall are the coordinates of the ball.

3.4.6. Supporter Field

The supporter takes the position on the symmetrical point of the Attacker with

respect to the horizontal line that divides the field into two equal halves. Formulation

for supporter field is given in Figure 3.16 and Equation 3.26.

x = xAttacker (3.26)

y = −yAttacker (3.27)



37

Figure 3.16. Potential Field definition for Supporter

where, xAttacker and yAttacker are the coordinates of the attacker.

3.4.7. Midfielder Field

The midfielder tries to get a position on the y position of the ball and having

a distance to the ball equal to the average of the distances of the attacker and the

supporter to the ball.

Figure 3.17. Potential Field definition for Midfielder



38

k =
√

(xAttacker − xBall)2 + (yAttacker − yBall) (3.28)

l =
√

(xSupporter − xBall)2 + (ySupporter − yBall) (3.29)

t =
k + l

2
(3.30)

x = xBall ± t (3.31)

y = yBall (3.32)

where, xAttacker and yAttacker are the coordinates of the attacker, xSupporter and ySupporter

are the coordinates of the supporter, and xBall and yBall are the coordinates of the ball.

3.4.8. Ball Field

The Ball Field consists of an attractive field located at the position of the ball

and two circular fields right above and below the line between the ball and the target

position. The circular fields are similar to limit cycle fields [20]. The direction of the

circular fields is towards to the target position.

Figure 3.18. Potential Field definition for Ball



39

x = xBall (3.33)

y = yBall (3.34)

where, xBall and yBall are the coordinates of the ball.

3.4.9. Constraint Fields

Constraint Fields are a set of repulsive fields for representing the obstacles and

borders of the fields. Field borders are modelled as line segment fields (Figure 3.19).

Line segment fields are combinations of infinite number of field generator points in a

line segment shape where only the nearest point affects the robot. Four types of line

segment fields are used to represent constraints in the game:

• Attractive Line Segment

• Repulsive Line Segment

• Left Through Right Line Segment

• Right Through Left Line Segment

An Attractive Line Segment consists of infinite number of attractive points along

the specified line. A Repulsive Line Segment consists of infinite number of repulsive

points along the specified line. A Left Through Right Line Segment behaves like an

attractive line segment, if the player is at the left side of the segment and behaves

like a repulsive line segment, if the player is at the right side of the segment. A Right

Through Left Line Segment is the opposite of a left through right line segment.

In our approach, there are two constraints related with the field definition and

game rules, and one constraint for game level strategy determination. The field borders

and the borders of home goal area are represented with repulsive line segments. For

the game strategy determination, one left through right line segment is located at the



40

Figure 3.19. Line Segment Fields: (a) Attractive, (b) Repulsive, (c) Left → Right,

(d) Right → Left

middle of the home half of the field and one right to left line segment is located at the

middle of the opponent half of the field. Magnitude of this line segments determines

the aggression level of our game strategy. For example, if the left half of the field is

our home half and the magnitude of left through right line segment is smaller than

the right through left line segment, our game strategy will be less aggressive, in other

words, more defensive.

Figure 3.20. Potential Field definition for constraints



41

3.5. Reactive Layer

The reactive Layer is responsible for low level actions. Instantaneous metrics

are calculated in this layer and objective functions consisting of instantaneous metrics

for roles are evaluated. The roles are then assigned to the robots according to the

values of objective functions. The play layer uses role and position information as well

as play level metrics for the robots to build up short-term motion planning for each

player. The result of this planning is a vector indicating the direction and speed of the

movement. Resultant vector is combined with constraint potential fields for the game

field and game rules ( teammates, opponent players, field borders, own goal area, etc.)

and then modify the combined vector according to the game layer metrics. The motion

command is then sent to the actuators.

3.6. Play Layer

After all the players are assigned with proper roles, they should act in a way that

they get the possession of the ball if currently the opponent team has the ball or if

our team currently has the possession of the ball, the players should act in order to

move the ball to a proper position for scoring. The game can be divided into two main

phases:

• Defensive Phase

• Offensive Phase

Defensive Phase simply can be summarized as getting the ball possession. In

defensive phase, players act upon their role definitions only. In other words, passive

defender maintains a position between the ball and own goal while the active defender

tries to get the possession of the ball. Offensive Phase starts with the gaining of ball

possession. Steps of offensive phase is as follows:

• Gaining the ball possession

• Building up the play



42

• Final touch / shoot

Final touch/shoot to the opponent goal has a set of prerequisite conditions to

be satisfied such as the clearance between the ball and the opponent goal and proper

distance and orientation of the player having ball possession to the opponent goal. In

order to satisfy prerequisite conditions, a sequence of behaviors should be executed.

Although we have some metrics for evaluating the possible performance of shooting

to the goal or passing to a teammate, all of these metrics are instantaneous metrics

so they are calculated by using the snapshots for a time-step. Finding the optimal

values of the metrics requires a greedy search. However, it can be said from the

experiences in real soccer that the team may have to act towards improper values of

the instantaneous metrics. For dealing with such a problem, we need some heuristics.

A Play can be defined as performing a sequence of predefined behaviors according to

defined conditions. Knowledge-based approaches are being used in real soccer based

on human expertise. Dylla et al. [21] have initiated a qualitative soccer formalism for

robot soccer. They proposed a top-down approach to the soccer knowledge, following

the classical soccer theory. In this point of view, play layer can be considered as the

deliberative part of the system.

Since each player is autonomous and performing a Play requires cooperation,

each player should agree on the play to be performed. In our approach, the player

with the ball (attacker) decides which play to be performed and broadcasts the ID of

the play to the teammates. Each player has the definitions of plays so a player can

easily perform motion planning since the role of the player and the required motion

of that role in the specified play is known. We followed Dylla et al. [21] and defined

two predicates as discussed in (3.2.2.1) and (3.2.2.2) and four actions for specifying the

plays:

• hasBall(Player)

• isReachable(Position1, Position2)



43

where predicate hasBall(Player) indicates whether Player has the ball or not and

predicate isReachable(Position1, Position2) denotes whether Position2 is reachable

from Position1 (i.e., the path between Position1 and Position2 is clear). Defined four

actions are:

• moveTo(Player, Position)

• dribbleTo(Position)

• shoot(Position)

• pass(Player)

moveTo(Player, Position) simply replaces the potential field of Player with an

attractive potential field on Position making the player move towards the Position.

dribbleTo(Position) makes the Player to dribble with the ball to Position. dribbleTo

is applied to the player with the ball.

In shoot(Position), Player with the ball shoots the ball to the given Position.

When pass(Player) action is set, player with the ball kicks the ball to Player.

In actions involved with the ball (dribbling, kicking and passing), ball fields are

used for maintaining the proper alignment of the player with ball.

The position space is quantized into nine regions in order to keep the position

definitions simple. The field is quantized as in Figure 3.21.

The defined predicates and actions allow us to formalize the soccer tactics and

to define the plays. The following offensive plays are defined:

• Counter-Attack

• Change Wings

• Attack

• Prepare Attack



44

Figure 3.21. Quantization of the game field into regions

Attack play tries to form a position combination for our players in such a way

that our attacker is located on a suitable position that maximizes its chance to score

and our supporter and midfielder are located on proper positions defined in their roles.

It is clear that it would not be so easy to obtain a suitable formation since opponent

players try to get the ball and act as obstacles.

Change Wings play aims to change the location of the ball from one side of the

field to the other side. It is used for finding an empty area on the field to move on to.

Attack play employs the Change Wings play to move with the ball to the opposite side

of the field if it is less occupied by the opponents.

Prepare Attack is used when offensive phase begins (i.e. when our defenders

gained the possession of the ball). The aim of this play is to move the ball to the

opponent side of the field as quickly as possible without losing any advantage on the

control of the ball. Depending on the distances and distribution of the opponents,

one or two remaining players (other than the attacker) crosses the half field line at

the opposite sides. The attacker then passes the ball to the player with the most

advantageous position such as reachability and clearance from the attacker and its

clearance and reachability to the opponent goal.



45

startDribble(region[CF]);

waitFor(isReachable(Supporter, region[LF]) ||

isReachable(Midfielder, region[RF]) ||

isReachable(Attacker, region[CF]);

if isReachable(Supporter, region[LF]) then

moveTo(Supporter, region[LF]);

pass(Supporter);

else if isReachable(Midfielder, region[RF]) then

moveTo(Midfielder, region[RF]);

pass(Midfielder);

else if isReachable(Attacker, region[CF]) then

shoot(region[CF]);

end if;

Figure 3.22. Specification of Counter-Attack Play

Counter-Attack takes place when we gained the possession of the ball and one

or more of our players are in the opponent half. The ball owner (or attacker) tries

to pass the ball to one of the players in the opponent half immediately. Players in

the opponent half change their positions to increase reachability and clearance for the

attacker to themselves.

If there is no appropriate “Play” to execute, players act according to their po-

tential field definitions.

waitFor statement produces no output until the specified condition is true. If no action

is set for a player in a play specification, player moves according to its role definition. In

other words, an action from the play layer subsumes the action from the role definition.



46

3.7. Game Layer

Game level strategy is controlled by the Game Layer. Since there is no widely

accepted game level optimal strategies for soccer, many different strategies may be

used. In our approach, a game level strategy is a mapping from game level metrics to

the defined constraint fields. The attack / defense schema is selected based on hasBall

predicate for team and appropriate roles are assigned depending on the ball possession.

hasBall for the team is determined as in Equation (3.35):

hasBall =





1, if ∃Playerown
i , hasBall(Playerown

i ),

0, otherwise

(3.35)

Game level strategy takes place when the motion planning for players is done

and the desired motion vectors are calculated. The resultant motion vectors are then

modified according to the game level strategy by adding more constraint fields. Two

line segment fields are used for game level strategy determination. In the left half of

the field, a left through right line segment field is placed at the middle of the field and

in the right half of the field, a right through left line segment field is placed. According

to the game level strategy, the magnitude of these line segment fields are changed so

the aggression level of the team can be adjusted. Setting a high magnitude value for

the left through right line segment field and setting a low magnitude value for the right

through left line segment field yields a more aggressive team in which the players tend

to favor attacking over defensing. Contrarily, setting a low magnitude value for the left

through right line segment field and a high magnitude value for the right through left

line segment field, our team will act in a more defensive manner than attacking. Value

setting for magnitude functions can be done in many different ways. In our work, we

used the formula in Equation 3.36:



47

µ1 + µ2 = 1 (3.36)

where, µ1 is the coefficient for the left through right line segment field and µ2 is the

coefficient for the right through left line segment field. Since the sum of the coefficients

is fixed, determination of one coefficient is enough.



48

4. EXPERIMENTAL RESULTS

A set of experiments were performed in order to first evaluate the validity of the

proposed metrics and then evaluate the performance of algorithm built on top of that

metrics. Teambots [22] simulator is used to perform such experiments. Teambots is

a 2D Java-based simulator that allows us to simulate MIROSOT small-size environ-

ment. We have used Teambots for gathering metric data, evaluation of metrics and

experiments for the new algorithm. In this section, first, brief information about the

simulator is presented. Then the details of experiments are given.

4.1. Teambots

Teambots is a JavaTMbased simulator for multi-robot teams developed by Balch

[22]. It is also suitable for different multi-robot simulations for tasks like foraging and

mapping. Each agent is controlled by a JavaTMprogram. The simulation environment

and simulation parameters are set through a configuration file. The simulator calls

takeStep() function in the controller class at each time step.

Since Teambots uses a configuration file for specification of simulation properties,

it is possible to run a large number of consecutive experiments with different parame-

ters. However, since physical simulation of the robots cannot reflect the real properties

of the robots, the result of the experiments should be tailored for real robots.

4.2. Experiments for Evaluating Metrics

For the evaluation of defined metrics, a total of 200 games were played against

four different opponents. MarketTeam [17] is used as the home team in these games.

MarketTeam uses a free market-driven role assignment scheme depending on the cost

functions for the roles. Each robot evaluates the cost functions for each role and the

robot offering the minimum cost is assigned to that role. Cost functions consist of linear

combination of a set of metrics in which each metric is weighted with a coefficient. The



49

proper coefficients for metrics are obtained with genetic algorithms.

In order to reveal the performance of the opponent teams in all aspects and to

eliminate ceiling and floor effects in evaluating the performance of our own team, we

have tried to use stratification in selecting the opponent teams so we choose both weak,

moderate and powerful teams as opponents. The selected opponents are:

• AIKHomoG : Is the strongest built-in team in Teambots. It uses dynamic role

assignment and potential fields for motion planning.

• RIY Team : Is the predecessor of Market Team and our approach. RIY uses

a dynamic role assignment strategy based on simple metrics like distance to the

ball. Potential fields are used in low level motion and coefficients obtained from

a genetic algorithm training are used in combination of different fields to obtain

resultant motion vector.

• Kechze : Uses dynamic role assignment and uses geometric calculations as the

role assignment criteria. We considered Kechze and RIY as moderate teams.

• SchemaNewHetero : Uses perceptual and motor schemas for different roles.

SchemaNewHetero is the weakest opponent in our experiments.

4.2.1. Decomposition of the Game Data

After the games are played and the position data for the players and the ball

are recorded, each game is divided into episodes which starts with a kick-off and ends

with either a score or end of half or end of game whistle. Episodes ending with own

scores are marked as positive examples and episodes ending with opponent scores are

marked as negative examples. Episodes ending with end of half or end of game whistle

are ignored. At the end of 200 games, 81 negative and 1016 positive episodes were

recorded. Each episode is then divided into smaller sequences of time-steps that are

separated by a touch (or kick) to the ball. These sub-episodes are also marked as

positive/negative examples depending on which team has touched the ball at the end of

the sub-episode. If the ball is kicked by own team and the previous kick was performed

by the opponent team, that sub-episode is marked as a Positive example. If the ball



50

is kicked by opponent players and the previous kick was made by home players, that

sub-episode is marked as a Negative example. The sub-episodes that are started and

ended with the kicks of same team are ignored. Then, the marked sub-episodes are

used to evaluate metrics related to the ball possession.

4.2.2. Metric Validation

Proposing metrics is a challenging task but it is even harder to evaluate the

performance of a metric. We use metrics to obtain quantitative information about the

environment but how can we be sure that the metric we proposed really measures the

property it is supposed to measure. So we are confronted with another challenging

problem: Metric validation. In order to consider a metric as informative, the metric

should show the same trends in the same situations. For example, we can propose the

distance to the ball metric for assessing the probability of getting the control of the

ball. However, distance might not be the right indicator. So we should check whether

the distance metric has the same trends in positions having the same ending (our team

got the control of the ball, or opponent team got the control of the ball). Due to

noise and sudden changes in positions of ball and other players, recorded metric data

contain noise making the observation of trends in metric data difficult. In order to

extract trends in recorded noisy data, some smoothing algorithms are applied to the

recorded data. We have tried two smoothing algorithms on the recorded metrics:

• 4253h,Twice Smoothing

• Hodrick-Prescott Filter

4.2.3. 4253h, Twice Smoothing

In 4253h, Twice algorithm, running median smoothers with window sizes 4, 2, 5

and 3 are applied consecutively. Then Hanning operator is applied. Hanning operator

replaces each data point Pi with Pi−1

4
+ Pi

2
+ Pi+1

4
. Then the entire operation is repeated

[23]. Performing two or three consecutive 4253h, Twice resulted in great reduce in

noise but the trend extraction is still hard in resultant smoothed data.



51

4.2.4. Hodrick-Prescott Filter

Hodrick-Prescott filter is proposed for extracting underlying trend in macroeco-

nomic time series [24]. In the Hodrick-Prescott (HP) Filter approach, the observable

time series yt is decomposed as:

yt = gt + ct (4.1)

where gt is a non-stationary time trend and ct is a stationary residual. Both gt and ct

are unobservable. We think yt as a noisy signal for the gt. Hence, the problem is to

extract gt from yt.

HP Filter solves the following optimization problem:

Min

{gt}T
t=1

T∑
t=1

(yt − gt)
2 + λ

T∑
t=2

[(gt+1 − gt)− (gt − gt−1)]
2 (4.2)

where λ is a weight for a signal against a linear time trend. λ = 0 means that there is

no noise and yt = gt. As λ gets larger, more weight is allocated for the linear trend.

So as λ → ∞, gt approaches to the least squares estimate of yt’s linear time trend.

Selecting the value of λ is another design problem. In our work, we used 14400 as the

value of the λ which is used to smooth monthly data in original implementation.

4.2.5. Metric Player

A software called Metric Player for replaying the games and displaying the metric

data is developed for examining the trends in the metrics / metric combinations /

objective functions (Figure 4.2). Metric Player is developed with Microsoft Visual

Studio .NET 2003. The software allows the user to replay an episode in real time



52

Figure 4.1. Smoothing: a) Raw data, b) 4253h,Twice, c) Hodrick-Prescott Filter

or frame by frame and simultaneously display the selected metric plot for the entire

episode so that the user can examine the trends as the episode advances. Also, it has

an indicator showing the current value of the metric for that time step in the episode.

These features help the user to investigate the consistency of the metrics.

The metric player reduces the metric analysis time dramatically since it allows

to determine threshold values of metrics by frame-by-frame playback and lets the user

follow the change trends in the metrics. For examining a metric, first the episode that

the metric belongs to is browsed and loaded. Then the desired metric is selected and

loaded from the list of metrics populated for the loaded episode. The canvas displaying

the metric plot is automatically scaled for the minimum and maximum values of the

selected metric. Figure 4.2 shows an example episode and pairwise separation metric

data smoothed with HP filter.



53

Figure 4.2. A snapshot from Metric Player

The calculated and smoothed metric data for recorded episodes are processed

to test the existence of the statistical correlation among the metric data recorded in

similar situations. In our work, we used the scored team as the similarity measure

among the situations.

In Figure 4.3, all own and opponent kicks are marked on the plot of the metric.

Bold spikes denote own kicks and narrow spikes denote opponent kicks. We ignore

the consecutive kicks performed by the same team so, Figure 4.4 only shows the kicks

in which the team with the ball possession is changed. In Figure 4.4, bold spikes

denotes the kicks that are performed by our team and preceding by an opponent kick

and, narrow spikes denotes the kicks that are performed by the opponent team and

preceding by an own kick. In order to test the correlation among the sub-episodes with

the same mark (positive or negative), a straight line is fitted on metric data in the sub-

episode by using Least Squares Fitting. Then, the possible correlation between the

mark of the sub-episode and the sign of the first derivative of the fitted line (i.e. slope

of the line) is investigated. It is expected that the signs of the slopes of fitted lines on



54

Figure 4.3. An example Pairwise Separation of the Ball metric with all the own and

opponent kicks

the metric data in sub-episodes with the same mark are the same. Since sub-episodes

separated by the kicks are used to analyze the ball possession, the mentioned test for

checking the consistency of a metric is performed for a set of 20 randomly selected

sub-episodes and for the following metrics:

• Area of the Convex Hull

• Density of the Convex Hull

• Pairwise separation of the Ball

• Vicinity Occupancy for the Ball

In Figure 4.5, fitted lines on the pairwise separation of the ball metric data

between two kicks can be seen. It is seen in the figure that the fitted lines to the

positive sub-episodes have positive slopes where the fitted lines to the negative sub-

episodes have negative slopes.

Table 4.1 shows that the pairwise separation of the ball metric has a positive

correlation with the sub-episode mark. Whenever the metric shows an increasing trend,



55

Figure 4.4. An example Pairwise Separation of the Ball Metric with positive and

negative kicks

Table 4.1. The Kick-Slope distribution for Pairwise Separation of the Ball

Own Kick Opponent Kick

Positive Trend 94 27

Negative Trend 19 50

our own team performs a kick and since performing a kick requires the ball possession,

it can be said that if the pairwise separation of the ball metric shows an increasing

trend, our own team has the ball possession.

The Kick-Slope distribution tables for the remaining metrics are given in Tables

4.2 - 4.6.

Table 4.2. The Kick-Slope distribution for Vicinity Occupancy for the Ball

Own Kick Opponent Kick

Positive Trend 74 67

Negative Trend 35 48



56

Figure 4.5. After fitting a Least-Squares Line to the metric

Table 4.3. The Kick-Slope distribution for the Density of the Convex Hull for Our

Own Team

Own Kick Opponent Kick

Positive Trend 78 63

Negative Trend 45 38

According to the metric evaluation results, only the pairwise separation of the ball

metric is consistent. Other metrics did not show similar trends in similar situations.

It should be noted that this evaluation is valid only for the used hyperparameters of

the system. Investigation of optimal hyperparameters for the system is beyond the

scope of this work, so we conclude that only the pairwise separation of the ball metric

can be used to measure the ball possession. Whenever the metric has a positive first

derivative, it means that our team will kick the ball. By using this, it can be said that

keeping the value of this metric as high as possible is desired.



57

Table 4.4. The Kick-Slope distribution for the Density of the Convex Hull for the

Opponent Team

Own Kick Opponent Kick

Positive Trend 66 46

Negative Trend 54 51

Table 4.5. The Kick-Slope distribution for the Area of the Convex Hull for Our Own

Team

Own Kick Opponent Kick

Positive Trend 75 66

Negative Trend 38 45

4.3. Experiments for Evaluating the Algorithm

Once the metrics are selected, objective functions for role assignments are built

and game level strategy is set, a set of experiments are carried out in order to evaluate

the performance of the proposed algorithm. 20 games are played against each of the

the following five opponents:

• AIKHomoG

• Kechze

• RIYTeam

• SchemaNewHetero

• MarketTeam

MarketTeam is the free-market driven team in which the coefficients for cost

function of roles are optimized by using Genetic Algorithms [17]. The other opponents

are described in Section 4.2. Game level metrics are used to compare the performances

of the algorithms that both our team and opponent teams uses.



58

Table 4.6. The Kick-Slope distribution for the Area of the Convex Hull for the

Opponent Team

Own Kick Opponent Kick

Positive Trend 58 59

Negative Trend 52 50

The results of the games are given in two tables. In Table 4.7, the number of

wins, losses, draws, for goals and against goals are given. In Table 4.8, the distribution

of the time that the ball has spent in own area, center and opponent area (Figure 3.10)

in percentage are given.

Table 4.7. Results of the games

Team Wins Losses Draws For Scores Against Scores

AIKHomoG 16 0 4 27 3

Kechze 9 1 10 14 2

RIYTeam 19 0 1 58 1

SchemaNewHetero 19 0 1 80 7

MarketTeam 4 0 16 5 1

Table 4.8. Measured metrics for games

Team Own Possession Opponent Possession Center

AIKHomoG 24.073 49.27 26.655

Kechze 18.427 61.959 19.614

RIYTeam 17.179 62.508 20.312

SchemaNewHetero 25,125 51.526 23.349

MarketTeam 23.623 49.054 27.323

In the experimental games, the MericliTeam using our proposed approach out-

performed all of the opponents. In a total of 100 games, our team has won 67 games

and lost only one game. 32 games ended with a draw. Score per game ratio for for

scores is 1.84 and 0.14 for against scores. The ball has spent at least two times more

time in the opponent possession area in all the games. This indicates that our team



59

is in the attacking phase in the most of the game. Our team has not shown a good

performance against its predecessor, the MarketTeam, even though it has not lost a

game to the MarketTeam and won four games against the MarketTeam. Based of the

experimental results, it can be said that our approach has outperformed the opponent

teams including the predecessor MarketTeam.



60

5. CONCLUSIONS

Multi-robot systems have an increasing popularity since they provide higher per-

formance due to parallelism, are immune to single-node failures due to redundancy and

they allow complex tasks to be achieved by many simple (and cheaper) robots instead

of a single, complex and expensive robot.

Multi-robot systems are suitable for foraging and exploration tasks (such as plan-

etary exploration and mine sweeping) in which the mission should be accomplished at

least for some degree. Also multi-robot systems show good performance in tasks that

rely on parallel execution or cooperation by their nature.

Robot soccer is a good testbed for multi-robot systems since it contains many

of the problems that a robot team may be confronted with (limited and noisy sen-

sors, limited and noisy actuators, partially observable and very dynamically changing

environment, etc).

Since controlling a single robot for performing complex tasks is a very hard and

challenging problem, proposing a control architecture for a robot team for cooperating

through proper task allocation is even harder.

In this work, a robust task allocation algorithm for four-legged robot soccer is

presented. Main contributions of this work are:

• A set of novel metrics in three different time resolutions from measuring the ball

possession to analyzing the level of dominance in game are proposed.

• A test for evaluation of Informativeness of the metrics is presented.

• A three-layered control approach for different time resolutions is presented.

There is a set of hyperparameters of the system. Finding the optimal values for

the hyperparameters is a challenging problem and is beyond the scope of this work.



61

So in the experiments, we have used arbitrarily selected values for the hyperparam-

eters. MericliTeam using the proposed approach outperformed the opponents in the

experiments and lost only one game out of the hundred games.

In this work, we have proposed an architecture for the four-legged soccer domain

but since the proposed architecture is very flexible, it can easily be tailored for the other

robot soccer leagues by adjusting hyperparameters and defining appropriate soccer

tactics in the play layer. Allowing the high level soccer tactics and game level strategies

without sacrificing from the benefits of the reactive systems make it both powerful and

flexible.

A set of metrics are proposed and evaluated for their informativeness and consis-

tency. A novel contingency table based metric validation is used in metric evaluation

process. For the used set of hyperparameters, only one metric has shown a consistent

behavior in similar game situations.

5.1. Future Work

There are many hyperparameters in both metrics and task allocation algorithm.

We have used handcrafted values for the hyperparameters but in fact they can be

optimized via many different optimization techniques. Since such optimizations are

beyond the scope of this work, they have been left as future works.

Metric evaluation (or metric validation) is a very important issue in performance

evaluation and calculation of the fitness. We are working on the metric validation

issue and detailed investigation of possible opportunities in development of such a

standardized validation test is left as a future work.

The algorithm could not be tested on real AIBOs since we only have four robots so

performance evaluation of the proposed algorithm on real robots and possible practical

issues that should be handled are left as a future work. That issues includes tailoring

the proposed metrics for partially observable and very noisy environment in real robots.



62

REFERENCES

1. Arkin, R. C. Behavior-Based Robotics, MIT Press, Cambridge, Massachusetts, 1998.

2. Zlot, R., A. Stenz, M. B. Dias, and S. Thayer, “Multi-Robot Exploration Con-

trolled by a Market Economy,” Proceedings of the IEEE International Conference

on Robotics and Automation, May 2002.

3. Kaplan, K. Design and Implementation of fast controllers for Mobile Robots, M.S.

Thesis, January 2003.

4. Veloso, M., S. Lenser, D. Vail, M. Roth, A. Stroupe, and S. Chernova, CMPack-02:

CMU’s Legged Robot Soccer Team, Carnegie Mellon University, Pittsburgh, October

2, 2002.

5. Köse, H., Ç. Meriçli, K. Kaplan and H. Levent Akın, “All Bids for One and One

Does for All: Market-Driven Multi-Agent Collaboration in Robot Soccer Domain”,

Computer and Information Sciences-ISCIS 2003, 18th International Sympsium, An-

talya, Turkey, Proceedings, LNCS 2869, pp. 529-536., November 2003.

6. Murphy, R. R., Introduction to AI Robotics, MIT Press, Cambridge, Massachusetts,

2000.

7. Meystel A., “Nested Hierarchical Control,” In K. M. Passino and P. J. Antsak-

lis (Eds.), Introduction to Intelligent and Autonomous Control, Kluwer Academic

Publishers, 1992.

8. Gat E., “On Three-Layer Architectures,” In D. Kortenkamp, R. P. Bonnasso, and

R. Murphy (Eds.), Artificial Intelligence and Mobile Robotics, AAAI Press, 1998.

9. Lyons D.M. and D.M. Hendricks , “A Practical Approach to Integrating Reaction

and Deliberation,” Proceedings of the 1st International Conference on Artifical In-



63

telligence Planning Systems, pp. 153-162, 1992.

10. Brooks R., “A Robust Layered Control System for a Mobile Robot,” IEEE Journal

of Robotics and Automation RA-2, pp. 14-23, April, 1986.

11. HORN, H. S. “Measurement of ’overlap’ in Comparative Ecological Studies,” Amer.

Natur. Vol. 100: pp. 419-424, 1966.

12. Khatib O., “Real-time Obstacle Avoidance for Manipulators and Mobile Robots,”

Proceedings of International Conference on Robotics and Automation (ICRA), pp.

500-505, 1985.

13. Dudek, G., M. Jenkin, E. Milios, and D. Wilkes, “A Taxonomy ofor Swarm

Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems ( IROS’93 ), Yokohama, Japan, pp. 441-47, 1993.

14. FIRA http://www.fira.net/, 2003.

15. Robocup Organization http://www.robocup.org, 2005.

16. H. L. Akin, et al., “Cerberus 2003” Robocup 2003: Robot Soccer World Cup VII,

The 2003 International Robocup Symposium Pre-Proceedings, pp.448, Padova, June

24-25, 2003.

17. Kose, H., K. Kaplan, C. Mericli and H. L. Akin, “Genetic Algorithms Based

Market-Driven Multi-Agent Collaboration in the Robot-Soccer Domain”, FIRA

Robot World Congress 2003, Vienna, Austria, October 1 - 3, 2003.

18. Kose, H, U. Tatlidede, C. Mericli, K. Kaplan and H. L. Akin, “Q-Learning based

Market-Driven Multi-Agent Collaboration in Robot Soccer,” Proceedings, TAINN

2004, Turkish Symposium On Artificial Intelligence and Neural Networks, Izmir,

Turkey, pp.219-228, June 10-11, 2004.

19. Tatlidede, U. Kaplan, K. Kose, H and Akin, H. L., “Reinforcement Learning for



64

Multi-Agent Coordination in Robot Soccer Domain”, Fifth European Workshop on

Adaptive Agents and Multi-Agent Systems, Paris, France, March 21-22, 2005.

20. Kim D.-H. and J.-H. Kim, “Limit-Cycle Navigation Method for Robot Soccer,”

Proceedings of the 2002 FIRA Robot World Congress, May, 2002.

21. Dylla, F. Ferrein, A. Lakemeyer, G. Murray, J. Obst, O. Rofer, T. Stolzenburg, F.

Visser, U. and Wagner, T. “Towards a League-Independent Qualitative Soccer The-

ory for RoboCup”, 8th International Workshop on RoboCup 2004 (Robot World Cup

Soccer Games and Conferences), Lecture Notes in Artificial Intelligence, Springer,

2004

22. Balch, T. “Teambots”, http://www.teambots.org, 2000.

23. Cohen, P. R., Empirical Methods for Artificial Intelligence, MIT Press, Cambridge,

Massachusetts, 1995.

24. Hodrick, R. J., and Prescott, E. C., “Postwar U.S. Business Cycles: An Empirical

Investigation.” Journal of Money, Credit and Banking Vol. 29 (1), February 1997.


