
Noname manuscript No.
(will be inserted by the editor)

Multi-Resolution Corrective Demonstration for Efficient Task Execution
and Refinement

Çetin Meriçli · Manuela Veloso · H. Levent Akın

Received: date / Accepted: date

Abstract Computationally efficient task execution is very
important for autonomous mobile robots endowed with lim-
ited on-board computational resources. Most robot control
approaches assume a fixed state and action representation,
and use a single algorithm to map states to actions. However,
not all situations in a given task require equally complex
algorithms and equally detailed state and action representa-
tions. The main motivation for this work is a desire to reduce
the computational footprint of performing a task by allow-
ing the robot to run simpler algorithms whenever possible,
and resort to a more complex algorithm only when needed.
We contribute the Multi-Resolution Task Execution (MRTE)
algorithm that utilizes human feedback to learn a mapping
from a given state to an appropriate detail resolution con-
sisting of a state and action representation, and an algorithm
providing a mapping from states to actions at that resolu-
tion. The robot learns a policy from human demonstration to
switch between different detail resolutions as needed while
favoring lower detail resolutions to reduce computational
cost of task execution. We then present the Model Plus Cor-
rection (M+C) algorithm to improve the performance of an
algorithm using corrective human feedback without modi-
fying the algorithm itself. Finally, we introduce the Multi-
Resolution Model Plus Correction (MRM+C) algorithm as

Ç. Meriçli
Computer Science Department
Carnegie Mellon University
E-mail: cetin@cmu.edu

M. Veloso
Computer Science Department
Carnegie Mellon University
E-mail: veloso@cmu.edu

H. L. Akın
Department of Computer Engineering
Boğaziçi University
E-mail: akin@boun.edu.tr

a combination of MRTE and M+C. MRM+C learns how
to select an appropriate detail resolution to operate at in
a given state from human demonstration. Furthermore, it
allows the teacher to provide corrective demonstration at
different detail resolutions to improve overall task execu-
tion performance. We provide formal definitions of MRTE,
M+C, and MRM+C algorithms, and show how they relate
to general robot control problem and Learning from Demon-
stration (LfD) approach. We present experimental results de-
monstrating the effectiveness of proposed methods on a goal-
directed humanoid obstacle avoidance task.

Keywords Learning from Human Demonstration · Com-
plementary Corrective Demonstration · Multi-Resolution
Task Execution

1 Introduction

Computational footprint of a robot controller is often over-
looked as long as the controller is able to perform as ex-
pected on the robot. As robots become more ubiquitous and
general-purpose, multiple software modules with different
purposes are likely to run on the robot simultaneously. De-
spite the continuous advancements in the computational tech-
nology that enables the mobile robots to be equipped with
more and more powerful computers, the on-board computa-
tional resources to be shared among these multiple software
components are still limited.

Most robot control approaches consider a fixed state rep-
resentation computed using the sensory input, an action rep-
resentation to be executed on the robot, and an algorithm for
executing the task at hand that maps a given state into an
action. Employing a complex algorithm that uses the most
detailed state representation and action definitions available
might be computationally expensive and infeasible for con-
tinuous use. Although some instances of the task might be

2 Çetin Meriçli et al.

handled using simpler algorithms operating on less detailed
state representations and action definitions, a system that re-
lies solely on such an algorithm might fail to capture the de-
tails in more complex situations, and that might eventually
lead to a failure in the task execution.

We contribute the Multi-Resolution Task Execution al-
gorithm (MRTE), a general framework that employs a set of
detail resolutions where each resolution has its own state and
action representations, and an algorithm using these repre-
sentations to perform the task. A detail resolution selection
policy is learned from human demonstration and used to de-
termine which detail resolution to operate at in a particular
state of the system. We then present Model Plus Correction
(M+C), an algorithm based on our previous work for im-
proving the performance of an existing algorithm by aug-
menting it with corrective human feedback [13,14]. Finally,
we combine MRTE with M+C into the Multi-Resolution
Model Plus Correction (MRM+C) algorithm. Through multi-
resolution corrective demonstration, MRM+C learns not only
how to dynamically change the detail resolution at which to
operate for a given state, but also how to improve the exe-
cution performances of individual algorithms for each de-
tail resolution through multi-resolution corrective demon-
stration.

Over the course of a training session, a teacher observes
the robot executing the task using hand-coded algorithms,
and intervenes if the current algorithm needs a correction,
or if the detail resolution in use is too coarse to cope with
the current situation. The robot learns a detail switching pol-
icy for deciding which detail resolution to use in a particular
state while also building up individual corrective demonstra-
tion databases for the algorithms at each detail resolution.
During the autonomous execution of the task, the robot first
chooses the most convenient detail resolution to run at, and
then computes the action to be performed in the perceived
state at the selected detail resolution.

2 Background and Related Work

We define the general robot control problem formally as a
tuple < Z,A, π >. The world consists of states S, and A
is the set of actions the robot can take. The state is not fully
observable; instead, the robot has access to an observed state
Z through the mapping M : S → Z. The robot uses an
execution policy π : Z → A for selecting the next action
a ∈ A based on the current observed state z ∈ Z.

2.1 Learning from Demonstration

Learning from Demonstration (LfD) is a supervised learn-
ing approach for transferring task or skill knowledge to an
autonomous robot by means of the demonstrations of the

task or skill execution [2]. The LfD methods make use of
a teacher who demonstrates the robot how to perform the
task or skill at hand while the robot records the demon-
strated actions along with the perceived state of the system
synchronously. The robot then derives an execution policy
to reproduce the demonstrated task or skill using the stored
state-action pairs. There are two main methods in which the
demonstrations can occur:

– Learning from observation: In this category, the teacher
performs the task or skill and the robot acquires the de-
monstration examples passively through observing the
teacher. This type of demonstration requires the robot
to be able to identify and map the teacher’s actions to
its own action set. This problem is also known as the
correspondence problem.

– Learning from experience: In this category, the teacher
makes the robot execute the task or skill by means of ei-
ther manipulating the body parts of the robot or through
instructing the robot using its own action set.

We define the LfD problem formally as an instance of
general robot control problem using a tuple< Z,A, πdemo >.
The execution policy πdemo : Z → A is extracted from a
demonstration dataset D consisting of teacher demonstra-
tions d ∈ D, where d =< z, ademo >, z ∈ Z, ademo ∈ A,
and ademo is the action demonstrated by the teacher in the
observed state z. During execution, the robot uses πdemo

for selecting the next action a based on the current observed
state z. The execution model of generic learning from demon-
stration system is given in Fig. 1.

demonstration
data

z

z

ππdemodemo

Teacher

a
teacher

a
demo

sensory input

actuation

E
N

V
IR

O
N

M
E

N
T

Fig. 1 The schematic representation of the generic LfD system.

Corrective demonstration is a form of teacher demon-
stration focusing on correcting an action of the robot by
proposing one of the following types of feedback:

– An alternative action to be executed in that state
– A modification to the selected action

Multi-Resolution Corrective Demonstration for Efficient Task Execution and Refinement 3

The usual form of employing corrective demonstration is
either through adding the corrective demonstration exam-
ple to the demonstration dataset, or replacing an example
in the dataset with the corrective example. The action policy
is then re-derived using the updated demonstration dataset.

However, re-deriving the execution policy each time a
correction is received can be cumbersome if the total num-
ber demonstrations is large. On the other hand, accumulat-
ing a number of corrective demonstration points, and then
re-deriving the execution policy may be misleading or in-
efficient since the demonstrator will not be able to see the
effect of the provided corrective feedback immediately.

2.2 Related Work

LfD is a rapidly growing field in robotics research as it en-
ables people who know how to perform a task but not how
to program robots to transfer the task knowledge to the robot
through demonstration. Being a very active field of research,
LfD approach has been utilized in many different learning
scenarios, focusing on different aspects of the learning. Here,
we present a few representative studies and state how our ap-
proach relates to them.

Thomaz and Breazeal proposed a method for utilizing
human feedback as the reward signal for the Reinforcement
Learning (RL) system [16]. They used a simulated kitchen
environment modeled as a Markov Decision Process (MDP)
where a robot tries to learn how to bake a cake. The human
teacher observes the robot operating, and provides a reward
signal at any time without interrupting the operation. The
notion of observing the robot executing the task and inter-
vening to provide feedback bears a resemblance with our
proposed approach. However, they utilize the feedback as a
reward signal to an action selected by the robot whereas in
our proposed approach, the teacher provides corrective feed-
back on robot’s actions. The second main difference is that
our proposed approach updates its existing task definitions
to improve task execution performance while their approach
utilizes the received feedback for training a RL system. They
evaluated three different ways of making queries where each
of the methods differ in the conditions of when to ask teacher
for a demonstration using an upper-torso humanoid robot in
a concept learning task. They presented a user study where
they evaluate the performance of the different ways of ask-
ing for feedback against each other and against a baseline
supervised learning method.

Chernova and Veloso introduced an approach for learn-
ing behavior policies from human demonstration called Con-
fidence Based Autonomy (CBA) [4]. The CBA approach
utilizes a confidence calculation mechanism for assessing
how confident the robot is about the action selected by its
execution policy. If the confidence value is above a certain

threshold, the robot proceeds with the execution of the se-
lected action. Otherwise, it asks for teacher demonstration.
The system builds a statistical model of the received demon-
stration examples, and becomes more confident in situations
where it has received a higher number of demonstrations.
The CBA approach reduces the need for teacher attendance,
hence it makes the teaching process less tedious and time
consuming for the teacher. The main difference between the
CBA approach and our proposed research is that instead of
starting from scratch, our approach needs teacher feedback
only when the existing algorithms fail to behave properly.

Simultaneous execution and feedback has been utilized
for skill refinement through tactile correction. Argall et al.
proposed a method for refining a demonstrated skill execu-
tion policy using kinesthetic feedback from the teacher dur-
ing the execution of the skill using the execution policy ex-
tracted from the demonstration examples [3]. In the Tactile
Policy Correction approach, if tactile feedback is detected,
the policy is modified according to the received corrective
tactile feedback. This approach shares a similarity with our
proposed approach as both systems utilize provided human
feedback interleaved with the task or skill execution.

Another method for learning low level skills from hu-
man demonstration through high level communication meth-
ods is the Advice Operator Policy Improvement (A-OPI) ap-
proach proposed by Argall et al. [1]. A set of defined ver-
bal operators are associated with functional transformations
for low level robot motion. The teacher provides feedback
in the form of defined verbal operators and the correspond-
ing transformations are applied on the specified portion of
the demonstration database. A new execution policy is then
re-derived out of the modified demonstration database. The
A-OPI approach is evaluated on a trajectory learning task
using a Segway RMP robot platform. Kolter et al. proposed
a hierarchical apprenticeship learning approach for learning
complex skills which are non-trivial even for the domain ex-
perts [9]. They propose a method that allows the teacher to
provide advice at different hierarchical levels as providing
isolated advice for a smaller part of the skill is often eas-
ier for the teacher. This approach shares similarities with
our multi-resolution task and skill refinement approach since
one of the two key advantages of our multi-resolution ap-
proach is the ability to cover a larger portion of the state-
action space with demonstration provided at a low detail
resolution. However, our approach differs from the hierar-
chical apprenticeship learning approach as it utilizes multi-
ple algorithms with different computational complexities to
handle different situations of the same task. [15] proposed a
hierarchical LfD approach on humanoid robots. The learned
behaviors are represented with a hierarchy of finite state ma-
chines, where different sub-parts of the task hierarchy can be
addressed during the demonstration.

4 Çetin Meriçli et al.

Grollman and Jenkins propose a learning from demon-
stration framework called “Dogged Learning” [7], and ap-
plied it to learning quadruped walking and a set of skills
related to playing soccer on a Sony AIBO. The Dogged
Learning algorithm share similarities with our approach on
having multiple “boxes” generating output and an arbitra-
tor for computing the final output but they use this approach
for learning input-output associations whereas our approach
utilizes human feedback to learn how to select the appropri-
ate detail resolution, and to correct the underlying default
algorithms.

Cobo et al. proposed a method for learning state ab-
stractions from demonstration data [5]. Using two differ-
ent algorithms, they select a subset of the originally avail-
able features that would yield least performance loss. Re-
ducing the dimensionality of the state space improves the
learning performance of the RL system they use. Automati-
cally selecting a subset of available features for constructing
a reward function for RL has also been investigated. Levine
et al. proposed an algorithm that selects relevant features
through building logical conjunctions of the features to the
example policy [11]. Meriçli et al. introduced an automated
method for learning reward function as a linear combination
of available features [12]. They use Genetic Algorithms to
learn appropriate feature combination and use the learning
performance with the candidate reward function as the fit-
ness value. Our approach differs from all these approaches
as in all these approaches the underlying assumptions are i)
a properly learned single state representation, and ii) a single
algorithm using the learned state representation would suf-
fice whereas we advocate that different instances of the same
task can be handled using different algorithms and different
state representations.

3 Approach

Our approach has two components: i) a multi-resolution task
execution framework, and ii) a complementary corrective
demonstration approach. In the remainder of the section,
we first introduce our multi-resolution task execution frame-
work. We then explain complementary corrective demon-
stration for augmenting the algorithms employed at each de-
tail resolution with corrective human demonstration. Finally,
we present the extended multi-resolution task execution and
refinement approach that combines the multi-resolution al-
gorithm execution and complementary corrective demon-
stration approaches.

3.1 Multi-Resolution Task Execution (MRTE)

We define Multi-Resolution Task Execution (MRTE) frame-
work as a tuple:

< πarbitrator, {c1, c2, ..., cN} >

where cr is the controller defined for the detail resolution
r ∈ R, and πarbitrator : Z → R is the detail resolution se-
lection policy. A controller for the detail resolution r is de-
fined as a tuple cr =< Zr, Ar, f

state
r , factionr , πmodel(r) >,

where fstater : S → Sr is the function for mapping the
global state to the state definition at the detail resolution r,
and factionr : Ar → A is the function for mapping the action
computed at the detail resolution r into an action representa-
tion that can be executed by the robot. πmodel(r) is the task
execution policy for each detail resolution r.

The detail resolution selection component acts as an ar-
bitrator among the different detail resolutions, and decides
which detail resolution to operate at for computing the next
action given the current state. A human teacher provides
demonstrations to teach the robot when to switch into a finer
detail resolution. Unless stated otherwise, the system always
runs at the most coarse detail resolution. In other words, the
system assumes that the current situation can be handled
by the simplest algorithm and state-action representations
unless a feedback for increasing the detail resolution is re-
ceived. The schematic representation of the MRTE approach
is given in Fig. 2.

Fig. 2 The schematic representation of the MRTE approach.

3.2 Model Plus Correction (M+C)

We present Model Plus Correction (M+C) complementary
corrective demonstration approach by extending the learn-
ing from demonstration model. Our approach makes use of
an algorithm as the default controller, and utilizes corrective
human demonstration to further improve the performance of
the algorithm without changing the algorithm itself. We de-
fine the M+C system as a tuple:

< Z,A, πdemo, πmodel, freuse >

Multi-Resolution Corrective Demonstration for Efficient Task Execution and Refinement 5

The LfD definition is extended with a model-based al-
gorithm πmodel : Z → A, and a correction reuse func-
tion freuse(z, ademo, amodel) : Z × A × A → A, where
ademo is the action computed by πdemo, and amodel is the
action computed by πmodel. The correction reuse function
computes the final action to be executed by the robot as a
function of the current observed state, and the actions com-
puted by the model-based and the demonstration policies.
During training, a human teacher observes the robot per-
forming the task using the model-based policy, and corrects
the action of the robot if the computed action is erroneous.
The robot stores the received corrections as exceptions to
the underlying algorithm. During execution, if an exception
for a similar situation is found in the correction database, the
robot substitutes the action computed by the algorithm with
a demonstrated correction action. The schematic representa-
tion of the M+C system is given in Fig. 3.

Fig. 3 The schematic representation of the M+C approach.

3.3 Multi-Resolution Model Plus Correction (MRM+C)

We combine M+C with MRTE and contribute the Multi-
Resolution Model Plus Correction (MRM+C) algorithm to
learn how to reduce the computational cost of task execu-
tion, and how to improve the overall task execution perfor-
mance from human feedback. We define MRM+C as a tuple

< πarbitrator, {c1, c2, ..., cN} >
where cr =< Z,A, fstate, faction, πdemo, πmodel, freuse >

is an instance of a modified version of the M+C model de-
fined as a tuple at the detail resolution r ∈ R. A schematic
diagram of the Multi-Resolution M+C framework is given
in Figure 4.

3.4 Demonstration Delivery: Training the System

During the demonstration sessions, the teacher uses a cus-
tom user interface running on a host computer to access the

Fig. 4 The schematic representation of the MRM+C approach.

current detail resolution as well as the representation of the
observed state at that resolution. The same user interface is
also used for delivering the action corrections and chang-
ing the detail resolution. The host computer communicates
with the robot over wireless Ethernet connection. The robot
broadcasts its computed state, the current detail resolution,
and other task-specific information back to the host com-
puter at each step. The robot also uses a text-to-speech soft-
ware system to announce the inferred state of the system and
the action selected to be executed. The received state infor-
mation of the robot is then visualized on the display. The
state visualization part of the interface is task-specific.

Along the course of a demonstration, the teacher ob-
serves the robot as it executes the task, and intervenes by
means of the following feedback types:

– The elaborate command: This type of feedback switches
to the next finer detail resolution.

– The correct command: This type of feedback replaces
the computed action to be executed with another action
defined in the same detail resolution.

If an elaborate command is received, the system checks if
there is a finer detail resolution available. If such a resolu-
tion is found, the received elaborate command is stored with
the current state of the system represented with the state def-
inition for the finest detail resolution available. The system
then switches to that detail resolution and goes back to the
action computation step. If a correct command is received,
the action to be executed by the robot is replaced with the
corrected action. The received action is also stored in a cor-
rection database along with the observed system state at the
current detail resolution. The algorithm for MRM+C train-
ing is given in Alg. 1.

3.5 Demonstration Reuse: Autonomous Execution

Each time the robot reaches an intermediate destination point
during the autonomous task execution, the MRM+C algo-
rithm switches to the most coarse detail resolution available
and computes an action using the algorithm associated with
that detail resolution. Then, the system starts searching in
this particular order:

6 Çetin Meriçli et al.

Algorithm 1 The algorithm for training the MRM+C system
1: resolution← COARSEST
2: state← computeState(resolution)
3: action← computeAction(state)
4: executeAction(action)
5: if feedbackReceived() then
6: feedback ← readFeedback()
7: if feedback == ELABORATE then
8: if resolution < FINEST then
9: saveDetailDemonstration()

10: increaseResolution()
11: goto 2
12: end if
13: else if feedback == CORRECT then
14: action← readCorrection()
15: saveCorrectionDemonstration()
16: executeAction(action)
17: end if
18: end if

– A correction sample in the demonstration database for
the current detail resolution

– An elaborate command in the elaboration demonstration
database for switching to the next detail level with finer
resolution.

If a correction sample is found in the corrective demon-
stration database that is received when the robot was in a
state similar enough to the current state of the system, the
provided correction action is selected as the next action. If
an elaborate command is received in a state similar enough
to the current state, the system changes its detail resolution
to the next finer detail resolution and recomputes an action
using the hand-coded algorithm specified for that resolution.
We use a domain and task specific similarity metric with
empirically determined parameters. The algorithm for the
autonomous MRM+C execution is given in Alg. 2.

4 Humanoid Obstacle Avoidance Task

We apply the proposed multi-resolution task execution and
refinement approach on an obstacle avoidance task using a
humanoid robot in a robot soccer environment. We define
the obstacle avoidance task for a humanoid soccer robot as
the problem of walking to a destination position without col-
liding with various obstacles placed on the field. In our im-
plementation, the robot starts in its own goal area and the
goal of the task is to reach within 1 meter distance of the
opponent goal. The number, shapes, and locations of the ob-
stacles on the field are unknown to the robot beforehands.
We use the regular field of the RoboCup Standard Platform
League (http://www.robocup.org, http://www.tzi.de/spl) as
the experimentation area, and Aldebaran Nao humanoid robot
(http://www.aldebaran-robotics.com) as the robot platform.
Fig. 5 presents an example instance of the humanoid ob-
stacle avoidance task with three obstacles. The dashed lines

Algorithm 2 The algorithm for MRM+C execution
1: resolution← COARSEST
2: state← computeState(resolution)
3: mostSimilar ← ∅
4: maxSim← 0
5: for each demo ∈ correctionDBresolution do
6: sim← getSimilarity(state, demo(state))
7: if sim > maxSim then
8: maxSim← sim
9: mostSimilar ← demo

10: end if
11: end for
12: threshold← getCorrectionThreshold(resolution)
13: if maxSim > threshold then
14: action← demo(action)
15: else
16: mostSimilar ← ∅
17: maxSim← 0
18: fState← computeState(FINEST)
19: for each demo ∈ elaborationDB do
20: sim← getSimilarity(fState, demo(fState))
21: if sim > maxSim then
22: maxSim← sim
23: mostSimilar ← demo
24: end if
25: end for
26: threshold← getElaborationThreshold()
27: if maxSim > threshold then
28: if resolution < FINEST then
29: increaseResolution()
30: goto 2
31: else
32: action← computeAction(state)
33: end if
34: else
35: action← computeAction(state)
36: end if
37: end if
38: executeAction(action)

represent an example traversal of the course by the robot
with the yellow circles denoting the intermediate destination
points selected by the robot.

Fig. 5 An example instance of the humanoid obstacle avoidance task
with an example solution in a configuration where two box-shaped ob-
stacles and another humanoid robot are placed on the field.

Multi-Resolution Corrective Demonstration for Efficient Task Execution and Refinement 7

4.1 Free Space Modeling using Vision

Instead of trying to detect the obstacles on the field, we build
a free space model of the surroundings to decide which di-
rection is the best to move to. The soccer field is a green
carpet with white field lines on it. Therefore, anything that
is non-green and lying on the field can be considered as an
obstacle, except for the detected field lines (Fig. 5). We uti-
lize a simplified version of the Visual Sonar algorithm by
Lenser and Veloso [10] and the algorithm by Hoffmann et
al. [8]. We scan the pixels on the image along evenly spaced
vertical lines called scanlines, starting from the bottom end
and continue until we encounter a certain number of non-
green pixels. Although the exact distance of a certain pixel
from the robot is a function of the position of the camera, the
distance of a pixel increases as we ascend from the bottom
of the image to the top, assuming all the pixels lie on the
ground plane. If we do not encounter any green pixels along
a scanline, we consider that scanline as fully occupied. Oth-
erwise, the point where the non-green block starts is marked
as the end of the free space towards that direction. To further
save some computation time, we do not process every ver-
tical line on the image. Instead, we process the lines along
every fifth pixel and every other pixel along those lines. As
a result, we effectively process only 1/10th of the image
(Fig. 6(b)). The pixels denoting the end of the free space are
then projected onto the ground to have a rough estimate of
the distance of the corresponding obstacle in the direction of
the scanned line. In order to cover the entire 180o space in
front of it, the robot pans its head from side to side. As the
head moves, the computed free space end points are com-
bined. The final computed free space is then divided into 15
slots, each covering an arc of 12o in front of the robot. In the
mean time, each free space slot is tagged with a flag indi-
cating whether that slot points towards the opponent goal or
not based on the location of the opponent goal in the world
model, or the estimated location and orientation of the robot
on the field (Fig. 6(c)). Here, the dark triangles indicate the
free space slots pointing towards the opponent goal.

For the humanoid obstacle avoidance task, we define
three detail resolutions: R = {coarse,medium, fine}. In
the remainder of this section, we explain the state and action
definitions, and the destination point selection algorithms
for each detail resolution.

4.2 Coarse Detail Resolution

At the coarse detail resolution, the 180o space in front of
the robot is divided into five equal slices of 36o each. The
existence of an obstacle along a free space slot is represented
with a boolean value in the state vector where true indicates
the slot is occupied. The slot is marked as occupied if the
mean distance of the most detailed free space representation

(a) (b)

(c)

Fig. 6 The environment as perceived by the robot: a) the color seg-
mented image, b) the computed perceived free space segments, and c)
the resulting free space model.

slots that fall within it is less than a certain threshold. In our
implementation, we use a threshold of 120 centimeters for
considering a free-space slot as occluded. The visualization
of the state in the low detail resolution is given in Fig. 7(a).

At this detail resolution, the destination point can be se-
lected from among the five free space slot directions with a
distance of 120 centimeters. However, the hand-coded algo-
rithm for this resolution only selects from the three walking
directions: forward, left, or right. If the middle slot (the slot
number 2) is free, the algorithm selects the forward direc-
tion, otherwise it checks the right and left slots to decide.
The algorithm also favors the left direction over the right di-
rection, if the leftmost free-space slot (the slot number 4) is
free. The destination point selection algorithm for the first
detail level is given in Alg. 3.

Algorithm 3 Destination point selection algorithm for the
coarse detail resolution.
1: slot← −1
2: state← getBooleanState(COARSE)
3: if ¬state(2) then
4: slot← 2
5: else
6: if ¬state(0) then
7: slot← 0
8: else
9: slot← 4

10: end if
11: end if
12: angle← calculateDirection(slot)
13: distance← 120
14: return calculateGlobalPoint(angle, distance)

8 Çetin Meriçli et al.

(a) (b) (c)

Fig. 7 Example visualizations for the state representations at different detail resolutions for the same situation. a) coarse detail resolution, b)
medium detail resolution, and c) fine detail resolution. For the coarse and medium level resolutions, a green slot means no obstacle towards that
direction, and a red slot means this direction is occluded by an obstacle. The target sign represents the selected destination point on the field
according to the algorithm for that detail resolution.

4.3 Medium Detail Resolution

The state representation for the medium detail resolution
uses the same principles as the coarse state representation
with the exception of using nine slots instead of five. An ex-
ample visualization of a medium detail resolution state rep-
resentation is given in Fig. 7(b).

The hand-coded algorithm for this resolution goes over
each free-space slot and selects the direction of the closest
available slot to the opponent goal as the destination direc-
tion, using a fixed walking distance of 120 centimeters. The
destination point selection algorithm for the medium detail
resolution is given in Alg. 4.

Algorithm 4 Destination point selection algorithm for the
medium detail resolution.
1: state← getBooleanState(MEDIUM)
2: goal← getGoalSlot()
3: closestSlot← 0
4: minDist← 9
5: for slot← 0; slot < 9; i← slot+ 1 do
6: if |goal− slot| ≤ minDist and¬state(slot) then
7: minDist← |goal− slot|
8: closestSlot← slot
9: end if

10: end for
11: angle← calculateDirection(closestSlot)
12: distance← 120
13: return calculateGlobalPoint(angle, distance)

4.4 Fine Detail Resolution

At the finest detail resolution, the free space is divided into
15 slots, and the occupancy status for each slot is repre-

sented with a distance value in centimeters. This value de-
notes the distance to the closest detected obstacle lying within
the coverage of that particular free-space slot. Fig.7(c) shows
an example visualization of the state representation for the
fine detail resolution.

In addition to the destination direction, the algorithm for
the fine detail resolution also determines the walk distance
towards that direction. We go over each free-space slot and
for each slot we compute a weighted distance value using a
sliding window of size three with the weights 0.25 at both
ends and 0.5 for the center. The direction of the free-space
slot with highest weighted distance is then selected as the
walking direction and the computed weighted distance is
used as the walking distance.

To be able to calculate the similarity of two given states
in any of the detail resolutions, in this implementation we
use the following function:

similarity = e−Kdiff 2

where K is a coefficient for shaping the similarity function,
and diff is the calculated sum of absolute differences of the
slot distances. For the boolean slots, diff is 0, if both slot
values are the same, and 1 otherwise. In our implementation,
we use K = 5.

4.5 Demonstration Interface

For the humanoid obstacle avoidance task, we use a task-
specific user interface for both monitoring the task execu-
tion, and delivering feedback. The user interface visualizes
the perceived free-space information, the position of the robot
on the field, and the current selected destination point that

Multi-Resolution Corrective Demonstration for Efficient Task Execution and Refinement 9

Algorithm 5 Destination point selection algorithm for the
fine detail resolution.
1: goalAngle← getGoalAngle()
2: if goalAngle < −π

2
or goalAngle > π

2
then

3: if |angle0−goalAngle| < |angleN−1−goalAngle| then
4: destAngle← angle0
5: else
6: destAngle← angleN−1

7: end if
8: destDistance← 120
9: else

10: maxDist← 0
11: for i← 1; i < N − 1; i← i+ 1 do
12: distance← 0.25disti−1 + 0.5disti + 0.25disti+1

13: if distance > maxDist then
14: maxDist← distance
15: maxSlot← i
16: end if
17: end for
18: angle← anglemaxSlot
19: distance← maxDist
20: end if
21: return calculateGlobalPoint(angle, distance)

Fig. 8 The user interface for delivering corrective demonstration to the
robot.

the robot walks to. A snapshot from the developed software
is given in Fig. 8.

The teacher uses the elaborate button to issue a detail
resolution refinement command. The current detail resolu-
tion is also displayed on the screen. If the current detail reso-
lution is either Coarse or Medium, the teacher uses the radio
buttons located on the bottom-right part of the interface. At
the Fine detail resolution, the user specifies the destination
point by clicking on the field visualization on the interface.
There are 9 radio buttons placed on an arc, each represent-
ing a free space slot. For the Medium detail resolution, all
radio buttons are enabled. For the Coarse detail resolution,
every other button is enabled, reducing the number of en-
abled buttons to 5. At the Fine detail resolution, all radio
buttons are disabled as the system expects a correction in the

form of a global point on the field. Similarly, at the Medium
and Coarse detail resolutions, it is not possible to specify a
destination point by clicking on the visualized field.

5 Results

Our experimental evaluation of the proposed approach is
two fold. In the first part, we present an experimental evalua-
tion performed on a real RoboCup field with Nao humanoid
robot. In the second part, we present an extensive experi-
mental analysis of the proposed approach on a simulated
version of the humanoid obstacle avoidance task.

5.1 Real World Experiments

We evaluated the performance of MRM+C approach against
the hand-coded controllers at the lowest and the highest de-
tail resolutions (Coarse Model and Fine Model algorithms)
on the obstacle avoidance task using two different obstacle
configurations, and an empty field as the base case (Fig. 9).

We used the task completion time as the performance
measure for the cases the robot was able to complete the
task. The results are given in Table 1. We ran 5 trials per
method for each configuration. The Rate column presents
the success rate. The Time shows the average time it took
the robot to complete the task for the successful trials. The
units for the rate and the average time columns are percent-
ages and seconds, respectively.

An examination of the results yields that the success rate
drops and the average task completion time gets longer as
the number of obstacles increase, as expected. For the empty
field configuration, all algorithms performed well in terms
of success rate, while the hand coded algorithm for the fine
detail resolution outperformed the others. The main reason
behind this result is since the fine resolution algorithm uses
free space slot distances to compute the destination point, it
selects a destination point very close to the opponent goal
and the task ends once the robot reach the destination so the
robot does not lose any time in localizing itself and scan-
ning the field for free space modeling. The performance of
MRM+C was better than the coarse detail resolution algo-
rithm but was worse than fine detail resolution algorithm
mainly due to the number of field scans it has executed.

For the single obstacle case, the performance of the coarse
detail resolution algorithm degraded considerably but the
fine detail resolution algorithm and MRM+C were able to
achieve high success rates. The fine detail resolution algo-
rithm outperformed the MRM+C since it uses the most de-
tailed state representation and computes long distance desti-
nation points, yielding a smaller number of field scans.

For the three obstacles case, the coarse detail resolu-
tion algorithm was too simple to handle the case, and the

10 Çetin Meriçli et al.

(a) (b) (c)

Fig. 9 The obstacle configurations used in the experimental evaluation. a) empty field, b) a single obstacle placed on the center of the field, and c)
three obstacles placed around the center circle.

fine detail resolution algorithm was not able to compute the
propoer actions in most of the times. Combining the use of
simpler algorithms when the current obstacle model does
not yield the need for very detailed actions, and the cor-
rective demonstration actions provided by the teacher, the
MRM+C algorithm outperformed both hand-coded algorithms
despite a considerable performance degradation compared
to the previous configurations.

In 8 out of 15 failed trials, the failure was mostly due to
the poor self localization data. The destination points com-
puted by the algorithms are in global world coordinates;
therefore, the performance gets heavily affected by the er-
ror in the estimated position.

Table 1 Performance evaluation results for the MRM+C approach in
Humanoid Obstacle Avoidance domain. The times are in seconds.

Empty Field 1 Obstacle 3 Obstacles
Method Rate Time Rate Time Rate Time

Coarse Res. 80% 115 60% 195 0% N/A
Fine Res. 100% 59 80% 94 40% 133
MRM+C 80% 96 100% 103 60% 182

5.2 Simulation Experiments

To evaluate the proposed approach extensively without suf-
fering from the indirect factors like the occasional self lo-
calization errors in the real world experiments, we modeled
a simulated version of the humanoid obstacle avoidance do-
main as the experimental testbed. We use the Player/Stage
framework [6] to model the environment in 2D. We model
the Nao humanoid robot with an omnidirectional wheeled
robot base, and we use a laser range finder to emulate the
vision-based free space perception used on the real Nao ro-
bots. The laser range finder readings are processed and con-
verted into the same format as the free-space detection mod-
ule on the real Nao provides. The omnidirectional walk of
Nao is modeled as a holonomic motion on 2D ground plane

and the speed of the wheeled robot is limited to 10 cm/s,
which is roughly the speed of a real Nao robot. We imi-
tate the self-localization information in the simulation with
a global positioning system distorted with a certain amount
of white noise.

We used randomly distorted variations of two different
obstacle configurations with three obstacles each. For each
trial, small random translational and rotational offsets are
applied on the obstacle positions in the configuration.

Coarse Medium Multi Res.
60

65

70

75

80

Fine

S
u
c
c
e
s
s
R
a
t
e
(
%
)

Model
Model + Correction

Resolution

Fig. 10 The overall performance results for the individual algorithms
and M+C instances for each detail resolution, along with the multi res-
olution performances without (MRTE) and with (MRM+C) corrective
demonstration. The performance is measured with the per cent of suc-
ceeded runs.

We evaluated the hand-coded algorithms for each de-
tail resolution (M), the improved algorithms using correc-
tive demonstration (M+C), multi-resolution task execution
using the hand-coded algorithms (MRTE), and the multi-
resolution corrective demonstration (MRM+C) algorithm.
During the training session, 23 low level, 8 medium level,
and 14 high level demonstrations were collected for the cor-
rective demonstration part, and 22 demonstrations for chang-

Multi-Resolution Corrective Demonstration for Efficient Task Execution and Refinement 11

ing the detail resolution were recorded for the detail resolu-
tion selection part.

Coarse M Coarse M+C Med M Med M+C Fine M Fine M+C MRTE MRM+C
0

1

2

3

4

5

6

7

8

9

10

A
vg

. #
 o

f a
ct

io
ns

Coarse Model Action
Coarse Correction Action
Med. Model Action
Med. Correction Action
Fine Model Action
Fine Correction Action

Fig. 11 The average number of actions executed per individual algo-
rithms, M+C instances, MRTE, and MRM+C systems.

0 50 100 150 200 250 300
60

62

64

66

68

70

72

74

76

78

80

MRTE

MRM+C

Cost (# of operations)

S
u
c
c
e
s
s
R
a
t
e
(
%
)

Coarse Model

Coarse M+C
Medium Model

Fine Model

Medium M+C

Fine M+C

Fig. 12 The cost vs. performance plot for individual algorithms, M+C
instances, MRTE, and MRM+C systems.

We ran 100 experiments for each algorithm. Fig. 10 shows
the success rates of the algorithms. The blue bar in the Multi
Resolution group is the success rate for the MRTE algo-
rithm, and the red bar in the same group is the success rate
for the MRM+C algorithm. As expected, the success rate of
the algorithms increase as the algorithm gets more complex
and runs at a higher detail resolution. In all four configura-
tions (three detail resolutions, and the multi-resolution exe-
cution), the M+C instances outbested the algorithms alone,
and the MRM+C algorithm outperformed the MRTE algo-
rithm. The composition of executed actions per evaluated al-
gorithm is given in Fig. 11. In both the MRTE and MRM+C
evaluations, the majority of the executed actions were com-
puted by the low detail resolution algorithm with and low
detail resolution demonstration database. Yet, the success

rates for the MRTE and MRM+C algorithms are better than
the low and medium level algorithms, and close to the high
level algorithm. To be able to assess the effectiveness in
terms of the success rate versus the computational cost, we
approximated the computational complexity of an algorithm
as the total number of comparison and assignment opera-
tions in the pseudo-code algorithms for the worst case exe-
cution scenario. The computational cost versus success rate
results are given in Fig. 12. In the figure, the horizontal axis
is the average number of operations per algorithm, com-
puted as the sum of estimated costs per detail resolution
multiplied by the average number of actions at that reso-
lution. For the execution of correction actions, we assume
a flat cost regardless of the detail resolution. As it is seen
in the figure, the success rate increases as the complexity of
the underlying algorithm increase. Also it is evident that the
augmentation of complementary corrective demonstration
actions through M+C approach improves the success rate
at each detail resolution. Similarly, the multi resolution task
execution with corrective demonstration (MRM+C) performs
better than MRTE. The success rate of the finest resolu-
tion algorithm with corrective demonstration (Fine M+C) is
higher than the MRM+C system, but the success rate / com-
putational cost ratio of MRM+C is better.

6 Discussion and Conclusion

In this paper, we introduced Multi-Resolution Task Execu-
tion (MRTE) approach, a novel method for handling differ-
ent situations in a task through running different algorithms
with varying complexities and using state and action rep-
resentations at different detail resolutions. The system fa-
vors the most coarse detail resolution by default, and learns
how to dynamically change the detail resolution to operate at
from corrective human feedback. To the best of our knowl-
edge, this is the first study that uses human feedback to learn
a policy for changing its internal representation according to
the observed state of the system.

We further elaborated on the proposed multi-resolution
task execution to allow the human teacher to provide cor-
rective feedback at different detail resolutions to improve
execution performances of individual algorithms associated
with each detail resolution. We introduced Multi-Resolution
Model Plus Correction (MRM+C) algorithm as a combina-
tion of the Multi-Resolution Task Execution (MRTE) and
the Model Plus Correction (M+C) algorithms. M+C enables
a human teacher to improve an algorithm through correc-
tive feedback without changing the algorithm itself. We pre-
sented formal models for the proposed approaches that re-
late the presented models with each other, and with the tra-
ditional LfD methods.

Our experimental results demonstrate the computational
efficiency of multi-resolution approach compared to con-

12 Çetin Meriçli et al.

trollers with fixed state and action definitions. In the real
world experiments, the MRM+C system outperformed the
algorithm of the finest detail level, demonstrating the task
execution improvement using corrective demonstration. The
experiment results from the simulated version of the task
also confirms the improvement on the task execution per-
formance in presence of corrective demonstration. Further-
more, the results demonstrate that the computational foot-
print of the overall task execution can be reduced drastically
without critically suffering from the task execution perfor-
mance.

Since our main motivation was to evaluate the effective-
ness of the underlying formal model, in this paper we as-
sumed that the teachers have a technical understanding of
the task at hand, and are able to use the custom user inter-
face for both monitoring the current state of the robot as
well as for delivering feedback. We assume that the teacher
will have no difficulties in interpreting the observed state of
the system at different resolutions. Furthermore, we assume
that the teacher can accurately foresee if a higher detail res-
olution would render the task doable in a given situation if
the current computed action needs correction. As a result,
we assumed that the demonstration data collected through
the training session has good quality, and contains little or
no wrong feedback actions. In our experimental evaluation,
the teacher was the first author for fulfilling the assumptions
listed above. The teacher used the user interface to infer the
state of the system, and chose the best action according to
his observations without having access to an optimal policy.

In our current evaluation, the finest state representation
is the set of all available state features, and we compute
coarser detail resolutions using the finest state representa-
tion. Therefore, in the current implementation, using finest
detail resolution for the elaboration commands does not cre-
ate a computational burden. However, in other tasks, the
finest detail resolution might require intensive computations.
To address this issue, we will investigate methods for using
the coarser detail resolutions for handling elaboration com-
mands in the future.

Our approach provides a very convenient framework for
mass deployment of robots into real world as it allows the
robots to be shipped with a basic set of abilities, and allows
the users to tail the robot behavior according to the needs
of their particular environmental or task conditions. There-
fore, our future plans include an experimental evaluation of
our approach with people having varying levels of technical
understanding. Although the formal framework is suitable
for any task or skill, we believe there is much room for im-
provement in the social interaction between the teacher and
the robot. In particular, we expect non-technical everyday
users to have difficulties in interpreting the state of the world
as observed by the robot. As a consequence, we expect un-
trained users to have difficulties in developing an intuition

on when to provide correction and when to switch into a
finer detail resolution, solely by interpreting the current ob-
served state displayed on the user interface. We hypothesize
that a possible way of improving the teacher’s understand-
ing of the perception of the world as seen by the robot is
to make the robot more interactive and give the teacher the
ability to inquiry robot state through dialog.

We plan to evaluate the efficiency of our approach on
a variety of more complex real world tasks to understand
and tackle the challenges in the teacher-robot interaction.
Furthermore, we plan to evaluate the robustness of our ap-
proach against uncertainty in sensing and action, and noisy
demonstration data.

References

1. Argall, B., Browning, B., Veloso, M.: Learning robot motion con-
trol with demonstration and advice-operators. In: Proceedings of
IROS’08 (2008)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A
survey of robot learning from demonstration. Robotics
and Automation Systems 57(5), 469–483 (2009). DOI
http://dx.doi.org/10.1016/j.robot.2008.10.024

3. Argall, B.D., Sauser, E., Billard, A.: Tactile Guidance for Policy
Adaptation. Foundations and Trends in Robotics 1(2), 79–133
(2010)

4. Chernova, S., Veloso, M.: Interactive policy learning through
confidence-based autonomy. Journal of Artificial Intelligence Re-
search 34 (2009)

5. Cobo, L.C., Zang, P., Jr., C.L.I., Thomaz, A.L.: Automatic state
abstraction from demonstration. In: Proceedings of IJCAI 2011

6. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage
project: Tools for multi-robot and distributed sensor systems. In:
Proceedings of ICAR 2003

7. Grollman, D., Jenkins, O.: Dogged learning for robots. In: Pro-
ceedings of ICRA 2007

8. Hoffmann, J., Jüngel, M., Lötzsch, M.: A vision based system for
goal-directed obstacle avoidance used in the rc’03 obstacle avoid-
ance challenge. In: Proceedings of RoboCup 2004 Symposium

9. Kolter, J.Z., Abbeel, P., Ng, A.Y.: Hierarchical apprenticeship
learning with application to quadruped locomotion. In: Proceed-
ings of NIPS’07 (2007)

10. Lenser, S., Veloso, M.: Visual sonar: Fast obstacle avoidance using
monocular vision. In: Proceedigns of IROS 2003

11. Levine, S., Popovic, Z., Koltun, V.: Feature construction for in-
verse reinforcement learning. In: Procs. of NIPS 2010, pp. 1342–
1350

12. Mericli, C., Mericli, T., Akin, H.L.: A reward function generation
method using genetic algorithms: A robot soccer case study. In:
Proc. of AAMAS 2010 (2010)

13. Mericli, C., Veloso, M., Akin, H.L.: Task refinement for au-
tonomous robots using complementary corrective human feed-
back. International Journal of Advanced Robotic Systems (2011)

14. Mericli, C., Veloso, M., Akin, H.L.: Improving biped walk stabil-
ity with complementary corrective demonstration. Autonomous
Robots 32, 419–432 (2012)

15. Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from
demonstration on humanoid robots. In: Humanoids 2010 Work-
shop on Humanoid Robots Learning from Human Interaction
(2010)

16. Thomaz, A.L., Breazeal, C.: Reinforcement learning with human
teachers: evidence of feedback and guidance with implications for
learning performance. In: Proceedings of AAAI 2006

Multi-Resolution Corrective Demonstration for Efficient Task Execution and Refinement 13

Çetin Meriçli is a post-doctoral fellow in the Computer Science De-
partment at Carnegie Mellon University. He received his Ph.D. from
the Department of Computer Engineering at Boğaziçi University, Turkey
in 2011. His research interests include robot learning from demon-
stration, human-robot interaction, developmental robotics, multi-robot
systems, robot soccer, and robot vision.

Manuela Veloso is the Herbert A. Simon Professor of Computer Sci-
ence in the Computer Science Department at Carnegie Mellon Uni-
versity. She researches in artificial intelligence and robotics towards a
vision of robots coexisting with humans in a seamless integration of
intelligence. She directs the CORAL research laboratory, for the study
of agents that Collaborate, Observe, Reason, Act, and Learn. Professor
Veloso is the president of the AAAI (Association for the Advancement
of Artificial Intelligence), and a trustee of RoboCup Federation. She
received the 2009 ACM/Sigart Autonomous Agents Research Award.
Professor Veloso is the author of one book on “Planning by Analogical
Reasoning”.

H. Levent Akın received his Ph.D. degree in Nuclear Engineering
from Boğaziçi University in 1984 and he has been a professor in the
Department of Computer Engineering, Boğaziçi University since 1989.
He is the director of Artificial Intelligence Lab and the founder of the
Robotics Group. He is currently Dean of Faculty of Engineering of
Bogazici University. He is a trustee of RoboCup Federation. He is
the chair of IEEE Computational Intelligence Society Turkey Chap-
ter. His research interests include artificial intelligence, autonomous
robots, and computational intelligence and he has published more than
100 papers on these topics.

