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Abstract— A robot can perform a given task through a policy
that maps its sensed state to appropriate actions. We assume
that a hand-coded controller can achieve such a mapping
only for the basic cases of the task. Refining the controller
becomes harder and gets more tedious and error prone as the
complexity of the task increases. In this paper, we present a new
learning from demonstration approach to improve the robot’s
performance through the use of corrective human feedback
as a complement to an existing hand-coded algorithm. The
human teacher observes the robot as it performs the task
using the hand-coded algorithm and takes over the control to
correct the behavior when the robot selects a wrong action
to be executed. Corrections are captured as new state-action
pairs and the default controller output is replaced by the
demonstrated corrections during autonomous execution when
the current state of the robot is decided to be similar to
a previously corrected state in the correction database. The
proposed approach is applied to a complex ball dribbling task
performed against stationary defender robots in a robot soccer
scenario, where physical Aldebaran Nao humanoid robots are
used. The results of our experiments show an improvement in
the robot’s performance when the default hand-coded controller
is augmented with corrective human demonstration.

I. INTRODUCTION

Transferring the knowledge of how to perform a certain
task to a complex robotic platform remains a challenging
problem in robotics research with an increasing importance
as robots start emerging from research laboratories into ev-
eryday life and interacting with ordinary people who are not
robotics experts. A widely adopted method for transferring
task knowledge to a robot is to develop a controller using
a model for performing the task or skill, if such a model is
available. Although it is usually relatively easier to develop
a controller that can handle trivial cases, handling more
complex situations often requires substantial modifications
on the controller. Due to interference among the newly
added cases and the existing ones, it becomes a tedious
and time consuming process to ameliorate the controller and
the underlying model as the number of such complex cases
increases. That brings out the need for a new approach to
robot programming.
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Learning from Demonstration (LfD) paradigm is one such
approach that utilizes supervised learning for transferring
task or skill knowledge to an autonomous robot without ex-
plicitly programming it. Instead of hand-coding a controller
for performing a task or skill, LfD methods make use of
a teacher who demonstrates the robot how to perform the
task or skill while the robot observes the demonstrations
and synchronously records the demonstrated actions along
with the perceived state of the system. The robot then uses
the stored state-action pairs to derive an execution policy
for reproducing the demonstrated task or skill. Compared to
more traditional exploration based methods, LfD approaches
aim to reduce the learning time and eliminate the necessity
for defining a proper reward function, which is considered
to be a difficult problem [1]. Moreover, since the LfD
approaches do not require the robot to be programmed
explicitly, they are very suitable for cases where the task
knowledge is available through a user who is an expert in
the task domain but not in robotics.

Providing a way for humans to transfer task and skill
knowledge to robots via natural interactions, the LfD ap-
proaches are also suitable for problems, where an overall
analytical model for the task or skill is not available but
a human teacher can tell which action to take in a par-
ticular situation. However, providing sufficient number of
examples is a very time consuming process when working
with robots with highly complex body configurations; such
as humanoids, and for sophisticated tasks with very high
dimensional state and action spaces.

LfD based methods have been applied to many learning
scenarios involving high level task and low level skill learn-
ing on different robotic platforms varying from wheeled and
legged robots to autonomous helicopters. Here we present a
few representative studies and strongly encourage the reader
to resort to [1] for a comprehensive survey on LfD.

While learning to perform high level tasks, it is a common
practice to assume that the low level skills required to
perform the task are available to the robot. Task learning
from demonstration have been studied in many different
contexts; such as, (from reinforcement learning point of
view) learning how to bake a cake [2], (from an active
learning point of view) learning concepts [3], and (from the
sliding autonomy point of view) learning of general behavior
policies from demonstration for a single robot [4], [5], [6],
[7] and multi-robot systems [8], [9] via the “Confidence
Based Autonomy (CBA)” approach.

Several approaches to low level skill learning in the
literature utilize LfD methods with different foci. Tactile



interaction has been utilized for skill acquisition through
kinesthetic teaching [10] and skill refinement through tactile
correction [11], [12], [13], [14], [15]. Motion primitives
have been used for learning biped walking from human
demonstrated joint trajectories [16] and learning to play air
hockey [17].

Several regression based approaches have been proposed
for learning quadruped walking on a Sony AIBO robot
and learning low level skills for playing soccer [18], [19],
learning several skills with different characteristics (cyclic,
skills with multiple constraints, etc.) using a probabilistic
approach that utilizes Hidden Markov Models (HMM) along
with regression [20], and learning non-linear multivariate
motion dynamics [21].

Interacting with the learner using high level abstract meth-
ods has been introduced in forms of natural language [22],
[23] and advice operators as functional transformations for
low level robot motion, demonstrated on a Segway RMP
robot [24], [25]. Reinforcement learning methods have been
investigated in conjunction with the LfD paradigm for teach-
ing a flying robot how to perform a complex skill [26],
learning to swing up a pole and keep it balanced [27], [28],
learning constrained reaching tasks [29], and hierarchical
learning of quadrupedal locomotion on rough terrain [30].

In our previous work on complementary skill refinement,
we used real-time corrective human demonstration to im-
prove the biped walk stability of a Nao humanoid robot
[31], [32]. An existing walk algorithm was used to capture a
complete walk cycle, and the captured walk cycle was played
back to obtain a computationally cheap open-loop walking
behavior. A human demonstrator monitored the robot as it
walked using the open-loop controller and modified the joint
commands in real-time via a wireless game controller to keep
the robot stable. The recorded demonstration values together
with the corresponding sensor readings were used to derive a
policy for computing proper joint command correction values
for a given sensory reading to recover the balance of the
robot.

In this paper, we present a corrective demonstration ap-
proach for task execution refinement where a hand-coded
algorithm for performing the task exists but is inadequate in
handling complex cases. The human demonstrator observes
the robot carry out the task by executing the hand-coded
algorithm and provides corrective feedback when the hand-
coded controller computes a wrong action. The received
demonstration actions are stored along with the state of the
robot at the time of correction as complements (or “patches”)
to the base hand-coded algorithm. During autonomous ex-
ecution, the robot substitutes the action computed by the
hand-coded algorithm with the demonstrated action if the
corrective demonstration history database contains a demon-
stration provided in a similar state. The key idea is to keep
the base controller algorithm as the primary source of the
action policy, and use the demonstration data as exceptions
only when needed instead of deriving the entire policy
out of the demonstrations and the output of the controller
algorithm. We applied this approach to a complex ball

dribbling task in humanoid robot soccer domain. Experiment
results show considerable performance improvement when
the hand-coded algorithm is complemented by corrective
human feedback. Since the human teacher provides cor-
rection only when the robot performs an erroneous action,
the number of corrective demonstration examples needed to
improve the task performance is smaller compared to other
LfD approaches in the literature.

The rest of the paper is organized as follows: In Section II,
we describe the robot soccer domain and the hardware
platform used in this study, followed by a brief overview
of the software infrastructure used in our humanoid robot
soccer system. In Section III, we first give the problem
definition for the ball dribbling task, which is our application
domain, and then we present a thorough explanation of the
special image processing system for free space detection,
the ball dribbling behavior developed using the available
low level skills and the software infrastructure described in
Section II, and a hand-coded algorithm for action selection
parts of the ball dribbling behavior. Section IV contains
the explanation of the corrective demonstration setup for
delivering the demonstration to the robot and a domain-
specific correction reuse system used for deciding when to
apply a correction based on the similarity of the current state
of the system to the states in the correction database. We
present our experimental study in Section V with results
showing a considerable improvement in the task completion
time using corrective demonstration as a complement to the
original hand-coded algorithm over using the original hand-
coded algorithm alone. Pointing out some future directions
to be further explored, we conclude the paper in Section VI.

II. BACKGROUND

A. Robot Soccer Domain

RoboCup is an international research initiative that aims
to foster research in the fields of artificial intelligence and
robotics by providing standard problems to be tackled from
different points of view; such as, software development,
hardware design, and systems integration [33]. Soccer was
selected by the RoboCup Federation as the primary standard
problem due to its inherently complex and dynamic nature,
allowing scientists to conduct research on many different
sub-problems ranging from multi-robot task allocation to im-
age processing, and from biped walking to self-localization.
With its various categories focusing on different challenges
in the soccer domain; such as, playing soccer in simulated
environments (the 2D and 3D Simulation Leagues) and
physical environments using wheeled platforms (the Small
Size League and the Middle Size League), humanoid robots
of different sizes and capabilities (the Humanoid League),
and a standard hardware platform (the Standard Platform
League), the ultimate goal of RoboCup is to develop, by
2050, a team of 11 fully autonomous humanoid robots that
can beat the human world champion soccer team in a game
that will be played on a regular soccer field complying with
the official FIFA rules.



In the Standard Platform League (SPL) of RoboCup [34],
teams of 3 autonomous humanoid robots play soccer on a 6
meters by 4 meters green carpeted field (Figure 1(a)). The
league started in 1998 as an embodied software competition
with a common and standard hardware platform, hence the
name. Sony AIBO robot dogs had been used as the standard
robot platform of the league until 2008, and the Aldebaran
Nao humanoid robot was decided to be the new standard
platform thereafter. A snapshot showing the Nao robots
playing soccer is given in Figure 1(b).

(b)

Fig. 1. a) The field setup for the RoboCup Standard Platform League (SPL),
and b) a snapshot from an SPL game showing the Nao robots playing soccer.

B. Hardware Platform

The Aldebaran Nao robot (Figure 2) which is the standard
hardware platform for the RoboCup SPL competitions, is
a 4.5 kg, 58 cm tall humanoid robot with 21 degrees of
freedom!. The Nao has an on-board 500 MHz processor, to
be shared between the low level control system and the au-
tonomous perception, cognition, and motion algorithms. It is
equipped with a variety of sensors including two color cam-
eras, two ultrasound distance sensors, a 3-axisaccelerometer,
a 2-axis gyroscope (X-Y), an inertial measurement unit for
computing the absolute orientation of the torso, 4 pressure
sensors on the sole of each foot, and a bump sensor at the
tiptoe of each foot.

"More information can be found on http://www.aldebaran-robotics.com.

Fig. 2. The Aldebaran Nao humanoid robot.

The Nao runs a Linux-based operating system and has a
software framework named NaoQi, which allows users to
develop their own controller software and access the sensors
and actuators of the robot. The internal controller software
of the robot runs at 100Hz, making it is possible to read new
sensor values and send actuator commands every 10ms.

C. Software Overview

Being able to play soccer requires several complex soft-
ware modules (i.e., image processing, self localization, mo-
tion generation, planning, communication, etc.) to be de-
signed, implemented, and seamlessly integrated with each
other. In this section of the paper, we present a brief overview
of the software infrastructure developed for the RoboCup
SPL competitions and also used in this study.

1) Image Processing: The Nao humanoid robots perceive
their environment via their sensors, namely the two color
cameras, the ultrasound distance sensors, the gyroscope, and
the accelerometer. All the important objects in the game
environment (i.e., the field, the goals, the ball, and the robots)
are color coded to facilitate object recognition. However,
perception of the environment remains the most challenging
problem primarily due to the extremely limited on-board
processing power that prevents the use of intensive and
sophisticated computer vision algorithms. The very narrow
fields of view (FoV) of the robot’s cameras (= 58° diagonal)
and their sensitivity to changes in light characteristics like
the temperature and luminance levels are among the other
contributing factors to the perception problem.

The job of the image processing module is to extract the
relative distances and bearings of the objects detected in
the camera image. In addition to the position information,
the image processing module also reports confidence scores
indicating the likelihood of those objects being actually
present in the camera image.

2) Self Localization and World Modeling: These modules
are responsible for determining the location of the robot as
well as the locations of the other important objects (e.g. the
ball) on the field. Our system uses a variation of Monte
Carlo Localization (MCL) called Sensor Resetting Localiza-
tion [35] for estimating the position of the robot on the field.



For calculating and tracking the global positions of the other
objects, we employ a modeling approach which treats objects
based on their individual motion models defined in terms of
their dynamics [36], [37].

3) Planning and Behavior Control: Our planning and be-
havior generation module is built using a hierarchical Finite
State Machine (FSM) based multi-robot control formalism
called Skills, Tactics, and Plays (STP) [38]. Plays are multi-
robot formations where each robot is executing a tactic
consisting of several skills. Skills can be stand-alone or
formed via a hierarchical combination of other skills.

4) Motion Generation: The motion generation module is
responsible for all types of movement on the field including
biped walking, ball manipulation (e.g., kicking), and some
other motions such as getting back upright after a fall. For the
biped walking, we use the omni-directional walk algorithm
provided by Aldebaran. For kicking the ball and the other
motions, we use predefined actions in the form of sequences
of keyframes, each of which define a vector of joint angles
and a duration value for the interpolation between the pre-
vious pose and the current one. Two variations (strong and
weak) of three types of kick (side kick to the left, side kick
to the right, and forward kick) are implemented to be used
in the games.

I1I. PROPOSED APPROACH
A. Problem Definition

Technical challenges are held as a complementary part of
the RoboCup SPL competitions with the aim of creating a
research incentive on complex soccer playing skills that will
help leverage the quality of the games and enable the league
to gradually approach the level of real soccer games both
in terms of the field setup and the game rules. Each year,
the technical challenges are determined accordingly by the
Technical Committee of RoboCup SPL.

Our application and evaluation domain, the “Dribbling
Challenge”, was one of the three technical challenges of the
2010 SPL competitions. In that challenge, an attacker robot
is expected to score a goal in three minutes without having
itself or the ball touching any of the three stationary defender
robots that are placed on the field in such a way to block
the direct shot paths. The positions of the obstacle robots are
not known beforehand; therefore, the robot has to detect the
opponent robots, model the free space on the field, and plan
its actions accordingly. An example scenario is illustrated in
Figure 3.

B. Free Space Detection using Vision

Instead of trying to detect the defender robots and avoid
them, our attacker robot detects the free space in front of it
and builds a free space model of its surroundings to decide
which direction is the best to dribble the ball towards. The
soccer field is a green carpet with white field lines on it.
The robots are also white and gray, and they wear pink
or blue waist bands as uniforms (Figure 1(b), Figure 3).
Therefore, anything that is non-green and lying on the field
can be considered as an obstacle, except for the detected

Fig. 3.

An example scenario for the dribbling challenge.

field lines. We utilize a simplified version of the Visual Sonar
algorithm by Lenser and Veloso [39] and the algorithm by
Hoffmann et al. [40]. We scan the pixels on the image along
evenly spaced vertical lines called scanlines, starting from
the bottom end and continue until we see a certain number
of non-green pixels. Although the exact distance function
is determined by the position of the camera, in general the
projected relative distance of a pixel increases as we ascend
from the bottom of the image to the top, assuming all the
pixels lie on the ground plane. If we do not encounter any
green pixels along a scanline, we consider that scanline as
fully occupied. Otherwise, the point where the non-green
block starts is marked as the end of the free space towards
that direction. To further save some computation time, we
do not process every vertical line on the image. Instead, we
process the lines along every fifth pixel and every other pixel
along those lines. As a result, we effectively process only
1/10" of the image(Figure 4(b)). The pixels denoting the
end of the free space are then projected onto the ground to
have a rough estimate of the distance of the corresponding
obstacle in the direction of the scanned line. In order to cover
the entire 180° space in front of it, the robot pans its head
from side to side. As the head moves, the computed free
space end points are combined and divided into 15 slots,
each covering 12° in front of the robot. In the mean time,
each free space slot is tagged with a flag indicating whether
that slot points towards the opponent goal or not based on
the location of the opponent goal in the world model, or the
estimated location and orientation of the robot on the field
(Figure 4(c)).

C. Ball Dribbling Behavior

We used the Finite State Machine (FSM) based behavior
system explained in Section II-C.3 for developing the ball
dribbling behavior. The FSM structure of the ball dribbling
behavior is depicted in Figure 5. The robot starts with
“searching for the ball” by panning its head from side to
side several times using both cameras. If it cannot find the
ball at the end of this initial scan, it starts turning in place
while tilting its head up and down, and this cycle continues
until the ball is detected. Once the ball is located on the
field, “approach the ball” behavior gets activated and the
robot starts walking towards the ball. Utilizing the omni-
directional walk, it is guaranteed that the robot faces the
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Fig. 4. The environment as perceived by the robot: a) the color segmented
image showing the potential obstacle points marked as red dots, b) the
computed perceived free space segments illustrated with the cyan lines
overlaid on the original image, and c) the free space model built out of
the perceived free space segments extracted from a set of images taken
while the robot pans its head. Here, the dark triangles indicate the free
space slots pointing towards the opponent goal.

ball when the “approach the ball” behavior is executed and
completed successfully. After reaching the ball, the robot
pans its head one more time to gather information about the
free space around it, calculates its current state, selects an
action that matches its state, and finally kicks the ball towards
a target point computed according to the selected action. If
the robot loses the ball at any instant of this process, it goes
back to the “search for the ball” state.

Except for the lightly colored select action and select
dribble direction states shown on the state diagram, each
state in the given FSM corresponds to a low level skill.
We use the existing low level skills in our robot soccer
system without any modifications; namely, looking for the
ball, approaching the ball, lining up for a kick, and kicking
the ball to a specified point relative to the robot by selecting
an appropriate kick from the portfolio of available kicks.

D. Action and Dribble Direction Selection

The select action and the select dribble direction states
constitute the main decision points of the system we aim
to improve using corrective demonstrations. The hand-coded
algorithms for both the action and the dribble direction
selection parts utilize the free space model in front of the
robot. After lining up with the ball properly, the robot selects
one of the following two actions:

e Shoot
e Dribble

The shoot action corresponds to kicking the ball directly
towards the opponent goal using a powerful and long range
kick. The dribble action, on the other hand, corresponds to
dribbling the ball towards a more convenient location on the
field using a weaker and shorter range kick. When the robot
reaches the decision point; that is, after it aligns itself with
the ball and scans the environment for free space modeling,
the action selection algorithm checks if any of the free space
slots pointing towards the opponent goal has a distance less
than a certain fraction of the distance to the goal. If so, the
path to the opponent goal is considered “occupied” and the
dribble action is selected in that situation. Otherwise, the
path is considered “clear” and the shoot action targeting the
center of the opponent goal is selected. The pseudo-code of
the action selection algorithm is given in Algorithm 1.

Algorithm 1 Action selection algorithm. T" € [0,1] is
a coefficient for specifying the maximum distance to be
considered as free space in terms of the distance of the goal.
In our implementation, we use I' = 0.5.
goalDist — getGoal Dist()
goal Angle — getGoal Angle()
if goal Angle < —% or goalAngle > 7 then
return dribble
else
for all i € getGoalSlots() do
distDif f «— |goalDist — dist;|
if distDif f > I'goal Dist then
return dribble
end if
end for
end if
return shoot

If the action selection algorithm deduces that the path to
the opponent goal is blocked and subsequently selects the
dribbling action, a second algorithm steps in to determine the
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Fig. 5.

best way to dribble the ball. All slots in the free space model
are examined and assigned a score computed as the weighted
sum of the distance values of the slot itself and its left and
right neighbors. The free space slot with the maximum score
is selected as the dribble direction. The algorithm for dribble
direction selection is given in Algorithm 2.

Algorithm 2 Dribble direction selection algorithm. NV is the
number of free space slots.

goal Angle — getGoal Angle()
if goalAngle < —3 or goalAngle > 7 then
if |angley — goalAngle| < |anglen—_1 — goal Angle|
then
dribbleAngle < angleg
else
dribbleAngle «— anglen _1
end if
else
mazxDist «— 0
fori —1;i<N—-1;1—i+1do
distance «— 0.25dist; 1 + 0.5dist; + 0.25dist;
if distance > maxDist then
mazxDist — distance
mazxSlot «— i
end if
end for
dribble Angle «— anglemazsiot
end if
return dribbleAngle

Using the two algorithms explained above for the two
action selection states in the behavior FSM, the robot is
able to perform the ball dribbling task and score a goal
with limited success. We define the success metric for
this task to be the time it takes for the robot to score a
goal. The performance evaluation results for the hand-coded
action selection algorithms are provided in Section V. In the
following section, we present the corrective demonstration
system developed as a complement to the hand-coded action

approach

direction selected

Ball is near

select action

select dribble direction

The state diagram of the base system.

selection algorithms for refining the task performance.

IV. CORRECTIVE DEMONSTRATION

Argall et al. [1] formally define the learning from demon-
stration problem as follows. The world consists of states .S,
and A is the set of actions the robot can take. Transitions
between states are defined with a probabilistic transition
function T'(s'|s,a) : Sx Ax.S — [0, 1]. The state is not fully
observable; instead, the robot has access to an observed state
Z with the mapping M : S — Z. A policy 7 : Z — A is
employed for selecting the next action based on the current
observed state.

Corrective demonstration is a form of teacher demon-
stration focusing on correcting an action selected by the robot
to be performed by proposing

¢ an alternative action to be executed in that state, or
« a modification to the selected action.

The usual form of employing corrective demonstration is
either through adding the corrective demonstration example
to the demonstration dataset or replacing an example in
the dataset with the corrective example, and re-deriving the
action policy using the updated demonstration dataset.

However, re-deriving the execution policy each time a
correction is received can be cumbersome if the total number
of state-action pairs in the demonstration database is large.
On the other hand, accumulating a number of corrective
demonstration points and then re-deriving the execution pol-
icy may be misleading or inefficient since the demonstrator
will not be able to see the effect of the provided corrective
feedback immediately.

In our approach, we store the collected corrective demon-
stration points separate from the hand-coded controller, and
utilize a reuse algorithm to decide when to use correction.
In the following subsections, we first describe how the
corrective demonstration is delivered to the robot, and then
we explain how the stored corrections are used during
autonomous execution.



A. Delivering Corrective Demonstration

During the demonstration session, the robot is set to a
semi-autonomous mode in which it executes the dribbling
behavior with the hand-coded action selection algorithms and
performs the dribbling task. Each time an action selection
state is reached, the robot computes an action, announces
the selected action, and asks the teacher for the feedback.
The teacher can give one of the following commands as the
feedback:

1) Perform the selected action

2) Revise the action

If (1) is selected, the robot continues with the action
computed by the hand-coded action selection system. If (2) is
selected, the robot provides the available actions and asks the
teacher to select one. If the robot is in the dribble direction
selection state, it first selects a free space slot according
to the hand-coded dribble direction selection algorithm. If
the teacher wants to change the selected dribble slot, the
robot provides the directions that can be chosen and waits
for the teacher to select one. In both revision cases, the action
provided by the teacher is paired with the current state of the
system and stored in a database. No records are stored in the
database when the teacher approves the robot’s selection as
the next action to be executed.

B. Reusing the Corrections

By the end of the demonstration session, the robot has
built a demonstration database of state-action pairs denoting
what action is provided by the teacher as a replacement of
the action computed by the hand-coded algorithms and what
was the robot’s state when that correction is received. During
autonomous execution, the decision of when to execute the
action selected by the hand-coded algorithms and when to
use corrective demonstration samples is made by a correction
reuse system based on the similarity of the current state of
the robot to the states in which the demonstration samples
were collected.

We define the observed state of the robot as

Z =< slotDisty, ..., slot Dist N1, goaly, ..., goal ny_1 >

where slotDist; is the distance to the nearest obstacle inside
slot 4, and goal; € {true, false} is a Boolean flag which is
set to true if the slot ¢ intersects with the goal, and set to
false otherwise.

Since the robot is expected to kick/dribble the ball into the
opponent goal, rather than the mere position of the robot on
the field , the distribution of the free space with respect to
the direction towards the goal needs to be taken into account.
Therefore, we calculate the sum of the absolute differences
of the free space slots using the slot pointing towards the
center of the goal as the origin if the goal is in sight. If
the goal is not somewhere within the 180° in front of the
robot, we calculate the sum of absolute differences of the
free space slots using the rightmost slot as the origin. The
similarity value in the range [0, 1] is then calculated as

. . . — ; 2
similarity = e K4

where K is a coefficient for shaping the similarity function,
anddiff is the calculated sum of absolute differences of the
slot distances. In our implementation, we selected K = 5.
The algorithm for similarity calculation is given in Algorithm
3.

Algorithm 3 The algorithm for computing the similarity of
two given states.

disteyrr — getSlotDist(Z ey
distgemo — getSlot Dist(Zgemo)
diff <0
if goalAngle < —7% or goalAngle > 7 then
for i — 0;i < N;i—i+1do
diff — diff + |disteyrr (i) — distgemo ()]
end for
diff — diff /N
else
goal Slot cyrr — getGoalSlot(Z eyrr)
goalSlot gemo — getGoal Slot(Z gemo)
num «— 0
81 < goalSlot ey, S2 — goalSlot gemo
while s; < N and s; < N do
diff — diff + |disteurr(81) — distgemo(s2)|
num «—num 4+ 1,57 «— 51+ 1,89 < 59+ 1
end while
81 < goalSlot cyrr, S2 — goalSlot gemo
while s; >= 0 and sy, >= 0 do
diff — diff + |disteurr(81) — distgemo(s2)|
num «—num—+ 1,81 < s1 — 1,89 50— 1
end while
diff — diff /num
end if
stmilarity «— e~
return similarity

K diff?

During execution, when the robot reaches the action
selection or dribble direction selection states, it first checks
its demonstration database and fetches the demonstration
sample with the highest similarity to the current state. If the
similarity value is higher than a threshold value 7, the robot
executes the demonstrated action instead of the action com-
puted by the hand-coded algorithm. In our implementation,
we use 7 = 0.9.

V. RESULTS

We evaluated the efficiency of the complementary correc-
tive demonstration using three instances of the ball dribbling
task with different opponent robot placements in each of
them. The test cases were designed in such a way that the
robot using the hand-coded action selection algorithm would
be able to complete the task, but not through following an
optimal sequence of actions (Figure 6). The following criteria
were kept in mind while designing the test cases:

o Case 1: In this scenario, we place two robots on the

periphery of the centercircle, leaving a narrow, but
passable corridor. The third robot is placed on the virtual



(b)

©

Fig. 6. Three different configurations used in the experiments. a) Case 1,
b) Case 2, and c¢) Case 3.

intersection of the opponent penalty mark and the left
corner of the opponent penalty box. The hand-coded
behavior computes the corridor between the two center
robots to be too narrow to pass. Therefore, the robot
tries to avoid the two robots at the center and mostly
chooses a right dribbling direction to avoid the third
robot as well. During the demonstration, we advised
the robot to take a direct shot between the two robots
at the center (Figure 7(b)). This scenario was a good
showcase for illustrating how to refine the otherwise
imprecise output of a very simple algorithm; no addi-
tional complexity were introduced to the algorithm and
a limited number of demonstrations were provided only
when the robot tried dribbling the ball whereas it could
take a direct shot.

o Case 2: In this case, a direct shot is not possible from
the initial position, and the robots are placed asymmet-
rically on the field in such a way that dribbling the ball
towards the robot placed further away is advantageous.

During the demonstration, the given advice was to first
dribble the ball to the left, and then take a direct
shot towards the goal (Figure 7(e)). The hand-coded
algorithms tend to choose the right action by dribbling
the ball to the left, but then the robot decides to advance
the ball through a series of dribbles before kicking it
into the goal instead of taking a direct shot.

e Case 3: This case was also designed to emphasize
the ability of the proposed algorithm to reshape the
behavioral response in addition to correcting mistakes.
Similar to Case 2, a direct shot is not possible from the
initial position, and the robots are placed symmetrically
so no clear advantage of choosing one initial dribbling
direction over another exists. During the demonstration,
we gave a very similar advice to the one we gave in Case
2 to investigate whether we can create a bias towards a
specific action in certain cases (Figure 7(h)).

We gathered corrective demonstration data from all three
cases and formed a common database. A total of 42 action
selection and 21 dribble direction selection demonstration
points were collected in a roughly 30 minutes long demon-
stration session. Time required to score a goal being the suc-
cess measurement metric, we then evaluated the performance
of the system with and without the use of the corrective
demonstration database.

We ran 10 trials for each case, 5 with the hand-coded
action and dribble direction selection algorithms (HA), and
another 5 trials with the corrective demonstration data (CD)
in addition to the HA (HA+CD). The sequence of actions
taken by the robot at each trial are depicted in Figure 7, and
the timing information is presented in Table L. In the figures,
a dashed line indicates dribble action, a solid line indicates
a shoot action, and a thin line indicates the replacement of
the ball to the initial position after committing a foul. In
the table, “out” means that the robot kicked the ball out
of bounds from the sides, “missed” means that the robot
chose the right actions but the ball did not roll into the
goal due to imperfect actuation, and “own goal” means that
the robot accidentally kicked the ball into its own goal.
The failed attempts are excluded from the given mean and
standard deviation values. The failures were mostly due to
the imperfection of the lower level skills like aligning with
the ball, and the high variance in both the kick distance and
the kick direction.

The decrease in the timings in all three test cases when
using (HA+CD) compared to the system using (HA) alone
shows an improvement in the overall performance since
according to the problem definition, the shorter completion
times are considered more successful. In Case 1, where the
average completion time is reduced by around one minute,
the improvement in the task performance was mostly due to
the bias created by the corrective demonstration which favors
taking direct shots as opposed to the dribbling action com-
puted by the hand-coded algorithm as given in Figure 7(c).
In Case 2, the complementary corrective demonstration was
able to correct the wrong decision made by the hand-coded
algorithm on taking a second dribble action instead of a



(a) Case 1 HA (b) Case 1 CD (c) Case 1 HA+CD

(d) Case 2 HA (e) Case 2 CD (f) Case 2 HA+CD

(g) Case 3 HA (h) Case 3 CD (i) Case 3 HA+CD

Fig. 7. The illustrations of the performance evaluation runs. Different colors denote different runs. For each run, a dashed line represents a dribble and
a solid line represents a kick. HA stands for hand-coded algorithm and CD stands for corrective demonstration. HA+CD shows the cases where the robot
is in autonomous mode using both hand-coded algorithm and the corrective demonstration database.

direct shot after dribbling the ball to the left. As a result, the
average task completion time was reduced almost to the half
of the time it took on average when only (HA) was used.
The effectiveness of corrective demonstration in Case 2 is
presented in Figure 7(f). In Case 3, the corrective demon-

stration was again proven to be effective in creating a bias
in situations where it is not analytically possible to prefer an
action over another. Presenting a preference for dribbling to
the left (Figure 7(h)), the corrective demonstration was able
to change the initial response of the hand-coded algorithm



TABLE I
ELAPSED TIMES DURING TRIALS.

Case 1 Case 2 Case 3

Trial HA HA+CD HA HA+CD HA HA+CD

1 2:38 1:35 6:34 - out 1:42 2:10 1:57 - out
2 2:27 1:49 3:31 1:47 2:31 1:57
3 1:48 1:32 2:02 2:08 2:24 1:03
4 2:36 1:27 3:52 3:47 - out 3:45 - own goal 1:53
5 3:57 1:31 2:56 1:29 - missed 1:54 2:52
mean 2:41 1:34 3:05 1:52 2:14 1:56
std 0.0326 0.006 0.033 0:009 0.011 0.031

from dribbling the ball to the right (Figure 7(g)) to dribbling REFERENCES

the ball to the left (Figure 7(i)).
VI. CONCLUSIONS AND FUTURE WORK

In this paper, we contributed a task and skill improve-
ment method which utilizes corrective human demonstration
as a complement to an existing hand-coded algorithm for
performing the task. We applied the method on one of
the technical challenge tasks of the RoboCup 2010 Stan-
dard Platform League competitions called the “Dribbling
Challenge”. Corrective demonstrations were supplied at two
levels: action selection and dribble direction selection. The
hand-coded action selection algorithms for kick type and
dribble direction selections can handle most of the basic
cases; however, they are unable to perform well on all the
defined test cases, as the test cases are designed in such
a way to measure different aspects of the developed ball
dribbling behavior. A human teacher monitors the execution
of the task by the robot and intervenes as needed to correct
the output of the hand-coded algorithm. During the advice
session, the robot saves the received demonstration examples
in a database, and during autonomous execution, it fetches
the demonstration example received for the most similar state
in the database using a domain specific similarity measure. If
the similarity of those two states is above a certain threshold,
the robot executes the fetched demonstration action instead
of the output of its own algorithm. We presented empirical
results in which the proposed method is evaluated in three
different field setups. The results show that it is possible
to improve the task performance by applying “patches” to
the hand-coded algorithm through only a small number of
demonstrations as well as “shaping” a hand-coded behavior
by complementing it with corrective demonstrations instead
of modifying the underlying algorithm itself.

Investigating the possibility of developing a domain-free
state similarity measure, applying the corrective demonstra-
tion to the other sub-spaces of the task space, considering
other demonstration retrieval mechanisms allowing better
generalization over the state-action landscape, and applying
the proposed method to more sophisticated tasks are among
the future work that we aim to address.
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