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Abstract We contribute a method for complementing an
existing algorithmic solution to performing a low level skill
with corrective human demonstration to improve skill exe-
cution performance. We apply the proposed method to biped
walking problem, which is a good example of a complex
low level skill due to the complicated dynamics of the walk
process in a high dimensional state and action space. We
introduce an incremental learning approach to improve the
Nao humanoid robot’s stability during walking. First, we
identify, extract, and record a complete walk cycle from the
motion of the robot while it is executing a given walk al-
gorithm as a black box. Second, we apply offline advice
operators for improving the stability of the learned open-
loop walk cycle. Finally, we present an algorithm to directly
modify the recorded walk cycle using real time corrective
human demonstration. The demonstration is delivered us-
ing a commercially available wireless game controller with-
out touching the robot. Through the proposed algorithm, the
robot learns a closed-loop correction policy for the open-
loop walk by mapping the received corrective demonstra-
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tion to the sensory readings while walking autonomously
using the refined open-loop walk cycle. Experiment results
demonstrate a significant improvement in the walk stability.

Keywords Learning from demonstration · Complex motor
skill acquisition ·Motion and sensor model learning

1 Introduction

Learning from Demonstration (LfD) paradigm is getting in-
creasingly popular in robotics research for transferring task
or skill knowledge to an autonomous robot without explic-
itly programming it. LfD methods involve a teacher giving
a demonstration of how to perform a task or a skill to the
robot. There are two major approaches followed for deliver-
ing the demonstration: either the teacher performs the task
or skill herself and lets the robot observe her, or the teacher
makes the robot perform the task or skill through teleoper-
ation or tactile interaction and lets the robot observe itself.
The robot records the demonstrated actions along with the
perceived state of the system at the time of the demonstra-
tion and then uses the recorded state-action pairs to derive an
execution policy for reproducing the demonstrated task or
skill. Compared to more traditional exploration based meth-
ods, LfD approaches aim to reduce the learning time and
eliminate the necessity of defining a proper reward function
which is usually considered to be a difficult problem [6].

Corrective demonstration is a form of teacher demon-
stration focusing on correcting an action selected by the robot
to be performed in a particular state by proposing either an
alternative action to be executed in that state, or a modifi-
cation to the selected action. The usual form of employing
corrective demonstration is either through adding the correc-
tive demonstration example to the demonstration dataset or
replacing an example in the dataset with the corrective ex-
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ample, and re-deriving the action policy using the updated
demonstration dataset.

If an algorithmic solution exists for performing the skill
but is partially successful, the corrective demonstration ap-
proach can be used to correct the algorithm if an appropri-
ate method for complementing the algorithm with human
demonstration can be found. Seeking an answer to the ques-
tion of whether it is possible to complement an algorithm
with human demonstration by treating the algorithmic solu-
tion as a black-box system, in this article we present a com-
plementary corrective demonstration method for improving
the biped walk stability on a commercially available hu-
manoid robot platform.

Being actively studied in humanoid robot research, biped
walking is a challenging problem due to the high dimen-
sional state and action space and the complex dynamics of
the walking process. In our approach, we make use of an
existing walk algorithm to obtain an initial open-loop walk
cycle, and then we improve the stability of the walk in two
corrective demonstration phases.

The phases of learning in our approach are as follows:

(a) An initial modeling of the walk motion by using the out-
put of an existing walk algorithm

(b) Offline improvement of the obtained walk model via high
level human advice

(c) Acquisition of a closed-loop gait via real time comple-
mentary corrective human demonstration while the robot
is walking using the open-loop walk obtained in the pre-
vious phases

The teacher uses a commercially available wireless game
controller to provide feedback without touching the robot.
The feedback signals given by the teacher are transmitted to
the robot over a host computer via wireless network. This
setup allows the teacher to closely follow the robot and de-
liver the corrective demonstration without physical contact.
The received correction signals are recorded together with
the state of the robot in the form of sensory readings. A
correction policy is then derived out of the recorded state-
action pairs using a learning algorithm of choice. Finally,
the learned correction policy is used to modify the open loop
walk cycle in such a way to keep the robot balanced as it
walks autonomously.

We present different types of correction and different
methods for state-action association, policy derivation, and
the application of the correction with different complexities.
In particular, we present two different correction types (ap-
plying correction in the joint space or in the task space),
two different state-action association methods (associating a
single sensor to a correction value without taking the current
position in the walk cycle into account or associating multi-
ple sensors with a correction value while taking the current
position in the walk cycle into account), two different pol-

icy extraction methods (fitting normal distributions on the
received correction values in the discretized sensory reading
space or using locally weighted regression with Gaussian
kernel), and two methods for deciding when to apply cor-
rection to the system (applying the correction at each N th

timestep within the walk cycle or applying the correction
only if the sensory readings go beyond the normal values ac-
cording to a certain statistical definition of the normal). We
present experiment results evaluating the performances of
the different combinations of the aforementioned methods
compared to each other and compared to the initial open-
loop walk. All of the presented methods improved the sta-
bility of the walk with an increase in the overall performance
as the used method gets more complex.

The organization of the rest of the paper is as follows.
In Section 2, we present an overview of the related work
and describe the hardware platform on which the proposed
methods are implemented. Section 3 presents a formal defi-
nition of biped walking, and elaborates on how an open-loop
walking behavior can be acquired from an existing walk al-
gorithm and how the acquired walking behavior can be im-
proved using human advice. We explain our real-time com-
plementary corrective demonstration approach thoroughly
in Section 4. Section 5 describes how we combine the cor-
rective demonstration with the state of the robot to obtain a
closed-loop walk. We present experiment results and evalu-
ate the performances of the proposed methods in Section 6.
We conclude the paper in Section 7, pointing out potential
issues to be addressed in the future.

2 Background

2.1 Related Work

LfD methods have been applied to many learning scenar-
ios involving high level task and low level skill learning on
different robot platforms varying from wheeled and legged
robots to flying ones. Here we present a few representative
studies with their standing points in comparison to our ap-
proach, and we strongly encourage the reader to resort to [6]
for a comprehensive survey on LfD.

For learning how to perform high level tasks, it is a com-
mon practice to assume that the required low level skills
are available to the robot. Task learning from demonstra-
tion have been studied in many different contexts. Thomaz
and Breazeal proposed a method for utilizing human feed-
back as the reward signal for the Reinforcement Learning
(RL) system for a simulated robot that tries to learn how
to bake a cake [29]. The notion of observing the robot exe-
cuting the task and intervening to provide feedback bears a
resemblance with our approach. However, they utilize the
feedback as a reward signal to an action selected by the
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robot whereas our approach makes use of the received feed-
back to improve the performance of an existing algorithm.
Chernova and Veloso introduced an approach called “Con-
fidence Based Autonomy” (CBA) for learning behavior poli-
cies from human demonstration and applied it on single robot
[13] and multi-robot problems [12], where the robot builds
a statistical model of the received demonstration examples
and gradually reduces the number of demonstration requests
as it becomes more confident. The main difference between
the CBA approach and our approach is that instead of start-
ing from scratch, our approach utilizes an existing algorithm
as the baseline controller and needs teacher feedback only
when the algorithm fails to compute a proper action to exe-
cute.

Several approaches to robot motion learning in the liter-
ature utilize LfD methods with different foci. Tactile inter-
action has been utilized for skill acquisition through kines-
thetic teaching [18] and skill refinement through tactile cor-
rection [5]. Their approach shares a similarity with our ap-
proach as both methods utilize human feedback interleaved
with the skill execution. A major difference, however, is that
while they use the received feedback to refine the action pol-
icy, our method keeps the feedback separate and learns a
correction policy instead.

Interacting with the learner using high level abstract meth-
ods has been introduced in forms of natural language [11,
26] and advice operators as functional transformations for
low level robot motion, demonstrated on a Segway RMP
robot [3, 4]. Reinforcement learning methods have been in-
vestigated in conjunction with LfD paradigm for teaching
a flying robot how to perform a complex skill [1], learn-
ing to swing up a pole and keep it balanced [9, 8], and
hierarchical learning of quadrupedal locomotion on rough
terrain [19]. Motion primitives have been used for learn-
ing biped walking from human demonstrated joint trajec-
tories [22] and learning to play air hockey [10].

Efficient biped walking is also of great importance for
RoboCup Standard Platform League (SPL), in which teams
of autonomous Aldebaran Nao humanoid robots play robot
soccer [24, 27]. There have been various studies on devel-
oping efficient biped walking methods that are suitable for
the Nao hardware. The proposed approaches include an ef-
fective omni-directional walking algorithm using parameter-
ized gaits and sensor feedback [25], an efficient Zero Mo-
ment Point (ZMP) search method [20, 21], an evolutionary
strategy to tune the parameters of a Central Pattern Gener-
ator based walk [15], a ZMP based omni-directional walk-
ing algorithm [28], and a preview control based method for
keeping the ZMP on the desired path [14]. Additionally, the

Nao is delivered with a default open-loop uni-directional
walk algorithm1.

2.2 Hardware Platform

Nao (Fig. 1), is a 58 cm tall humanoid robot with 21 de-
grees of freedom, weighing 4.5 Kg [2]. It is equipped with
an on-board processor running at 500MHz, and a variety
of sensors including a 3-axis accelerometer, a 2-axis (Roll-
Pitch) gyroscope, and a special circuitry for computing the
absolute torso (upper body of the robot) orientation using
the accelerometer and gyroscope data. The torso angle es-
timator, the accelerometer, and the gyroscope sensors use
a right-hand frame of reference (Fig.1(b)). As opposed to
most other humanoid robot designs, Nao does not have sep-
arate hip yaw joints for each leg [16], instead, the two legs
have mechanically coupled hip yaw-pitch joints that are per-
pendicular to each other along the Y −Z plane and driven by
a single motor, drastically limiting the reuse of biped walk
algorithms developed for other humanoid platforms.

(a) (b)

Fig. 1 a) The Nao robot. b) The frame of reference for sensors.

The internal controller software of the robot runs at 50Hz;
therefore, it is possible to read new sensor values and send
actuator commands every 20ms2.

3 Open-loop Biped Walking

Biped walking is a periodic phenomenon consisting of con-
secutive walk cycles. A walk cycle (wc) is a motion segment
that starts and ends with the same configuration of the joints.
Each walk cycle consists of four phases:

1 The Nao V3 model is delivered with a new closed-loop omni-
directional walk; however, that model was not available to us during
our experimental study.

2 The mentioned frequency is for the Nao V2 model which was the
platform used in this study. The internal control software on the more
recent V3 model runs at 100Hz.
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• First single support phase (left)
• First double support phase
• Second single support phase (right)
• Second double support phase

Fig. 2 Walk cycle phases: a) first single support, b) first double sup-
port, c) second single support, and d) second double support.

During the first single support phase, the robot stands on
its left foot, and swings the right leg forward. During the
double support phases, both feet are on the ground, differing
in the offsets along the X axis from the first double support
phase to the second. During the second single support phase,
the robot stands on its right foot to lift and swing the left leg
forward as shown in Fig. 2. The walk cycle has a duration
of T timesteps, where wcjt , t ∈ [0, T ), j ∈ Joints is the
command to the joint j provided at timestep t.

In principle, if we could generate the correct joint com-
mand sequence for a walk cycle, it would then be possible
to make the robot walk indefinitely by executing this cy-
cle repeatedly in an open loop fashion. However, in reality,
various sources of uncertainty associated with sensing, plan-
ning, and actuation affect biped walking.

• In sensing, the main source of uncertainty is the noise in
the sensor readings due to the lack of precision/accuracy
(e.g., high noise rate on the gyroscopes and the accelerom-
eters and imprecise position sensing on the joints).

• In planning, the simplifications and assumptions that
have been made while building the mathematical model
of the system prevent the developed model from captur-
ing all physical aspects of the real world.

• In actuation, several factors such as friction inside the
gearboxes, the backlash in the gears, and unmodeled pay-
load effects constitute the main sources of uncertainty.

As a result, the actual movement of the robot differs
from the desired one as seen in Fig. 3. Here, the plot with
crosses illustrates the joint commands, i.e., the desired tra-
jectory, and the plot with asterisks shows the actual trajec-
tory followed by the joint. The section towards the end where
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Fig. 3 An example actuation error. The ankle roll joint of the left leg
is unable to follow the desired trajectory due to the weight of the body.

the actual joint position significantly digresses from the de-
sired trajectory corresponds to a moment where the robot is
standing on its left foot in the first single support phase and
the movement of the ankle joint is affected by the weight of
the whole body.

Failing to follow the desired trajectory of the joint causes
the robot to act differently than expected and this difference
affects the balance negatively. This kind of unforeseen or
poorly modeled sources of uncertainty are the typical draw-
backs of an open-loop controller, which is a type of con-
troller that solely uses its model of the system to compute
the next action and does not take any feedback from the envi-
ronment into account to determine whether the desired state
is reached. A closed-loop controller, on the other hand, uses
both its model of the system and the feedback received from
the system to determine the next action. Similarly, an open-
loop walk algorithm generates a set of joint angle commands
at each execution timestep to form a walk pattern without
taking the actual state of the robot (i.e., sensory readings)
into account while a closed-loop walk algorithm incorpo-
rates the sensory feedback into the joint command genera-
tion process in such a way that the resulting walk motion
keeps the robot balanced.

In the remainder of this section, we first present how an
open-loop walk cycle can be captured by observing the out-
put of an existing walk algorithm. We then present how the
obtained open-loop walk can be further improved offline us-
ing the Advice Operators Policy Improvement method [4]. In
the following sections, we present how a closed-loop walk
can be built on top of the obtained open-loop walk.

3.1 Obtaining an Open-loop Walk

If a walk algorithm is readily available at hand, one way
of obtaining a walking behavior without directly employing
the algorithm is to observe the output of the algorithm and



5

generate a single walk cycle out of those observations to be
played back in a loop. To accomplish this, we use the exist-
ing walk algorithm as a black-box and record a number of
walk sequences where the robot walks forwards for a fixed
distance at a constant speed using the selected algorithm. We
record the sequences in which the robot was able to travel
the predetermined distance while maintaining its balance.

A set of examples of the robot walking without falling
provide data D for each t, t ∈ [0, T ), in the form of the
commands received by each joint

−→
Dj(t) and the correspond-

ing sensory readings S(t) provided by the set of sensors
Sensors. We obtain a single walk cycle wc using D as
wcjt = µ(

−→
Dj), j ∈ Joints, t ∈ [0, T ). In addition, we

fit a normal distribution N(
−−→
µ(t),

−−→
σ(t)) to the readings of

each sensor at each t, where µs(t) is the mean, and σs(t)
is the standard deviation for the readings of the sensor s ∈
Sensors at time t in the walk cycle (Fig. 4).

Sending the joint commands in the obtained walk cy-
cle to the robot repetitively, hence playing back the captured
walk cycle in a loop yields an open-loop walk behavior that
performs similar to the original walking algorithm without
employing the algorithm itself. Although the Nao robot has
a total of 21 joints, for our experiments we utilize only 12 of
them, which are all the leg joints except the shared hip yaw-
pitch joint and the shoulder roll joints for the arms, consti-
tuting the set Joints.

3.2 Corrective Demonstration Using Advice Operators for
Offline Improvement

Advice Operators Policy Improvement (A-OPI) is a method
for improving the execution performance of the robot in a
human-robot learning from demonstration (LfD) setup [4].
Advice operators provide a language between the human
teacher and the robot student, allowing the teacher to give
advice as a mathematical function to be applied on the ac-
tions in the demonstration database and/or the observations
corresponding to those actions. The resulting data is then
used to re-derive the execution policy. More formally, for
the defined advice operators O = {o1, o2, . . . , oN}, there is
a set of corresponding mathematical functions

F = {f1(X1), f2(X2), . . . , fN (XN )}

where Xo =< x1, x2, . . . , xK > is the parameter vector for
the advice operator o. For each received advice o along with
its parameter vector Xo, the corresponding mathematical
function fo(Xo) is applied on the observations Z and/or ac-
tions A such that Z ′ ← fo(Xo, Z) and/or A′ ← fo(Xo, A).
Advice operators are especially useful in domains with con-
tinuous state/action spaces where the correction must be pro-
vided in continuous values.

10 20 30 40 50
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10 20 30 40 50
−50
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Fig. 4 Distribution of the sensor values over the complete walk cycle
for a stable walk sequence. The middle line denotes the mean and the
vertical lines denote +/- 3σ variance. The x-axis is timesteps, and the
y-axis is the sensor value.

We use A-OPI for correcting the obtained walk cycle in
its open-loop form based on human observations of the exe-
cuted walk behavior. We defined three advice operators O =

{ScaleSwing,ChangeFeetDistance, ChangeArms} that
are applied on the walk cycle:

• ScaleSwing(k): Scales the joint commands of the hip
roll joints (along the X axis) in the walk cycle by a fac-
tor of k where k ∈ [0, 1]. The hip roll joints generate
the lateral swinging motion while walking. The imple-
mented function for the ScaleSwing operator is a coeffi-
cient to be applied on the joint commands for both hip-
roll joints:

fScaleSwing(k) = wcjt ← k · wcjt

where j ∈ {HipRollLeft,HipRollRight}, and ∀t ∈
[0, T ].

• ChangeFeetDistance(d): Applies an offset of d millime-
ters to the distance between the feet along the Y axis.
The operator function is implemented using the forward
and inverse kinematics methods explained in Section 4.3.
For each timestep t in wc, first the position of the feet is
computed using forward kinematics, then the offset d is
applied on the inter-feet distance, and finally the mod-
ified joint angles wc′t are computed using the inverse
kinematics.

• ChangeArms(angle): Raises or lowers the arms by angle
radians along the Y − Z plane. The implemented func-
tion for the ScaleSwing operator is an offset to be ap-
plied to the shoulder roll joint commands:

fChangeArms(angle) = wcjt ← wcjt + angle

where j ∈ {ShoulderRollLeft, ShoulderRollRight},
and ∀t ∈ [0, T ].

During the A-OPI improvement, the robot executes the
walk with the current walk cycle as the teacher observes the
robot. Then, the teacher applies the operators on the walk
cycle using a custom user interface running on the host com-
puter. Finally, the walk cycle modified by the defined func-
tions for the operators is transmitted to the robot over wire-
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less network. It replaces the old walk cycle on the robot and
the robot goes back to executing the walk motion using the
newly received modified walk cycle. Repeating this process
for a set of iterations, an improvement on the walk stability
is achieved over the initial walk cycle. The initial and im-
proved versions of hip roll joint values to generate lateral
swinging motion are shown in Fig. 5 as an example. Here,
decreasing the amplitude of the hip roll joint signal causes
the robot to swing less, which contributes to preservation of
balance positively.

Fig. 5 Initial and improved joint commands for hip roll joints generat-
ing swinging motion while walking.

4 Real-Time Complementary Corrective Demonstration

The complementary corrective demonstration approach com-
plements the output of an algorithm with human feedback,
whenever the default output of the algorithm fails to per-
form as expected. A correction policy is learned using the
received corrective demonstrations, and the perceived state
of the system in which those demonstrations were received.
The underlying algorithm remains untouched; the learned
correction policy encapsulates the algorithm output and mod-
ifies the output if a correction is needed. A sketch of the
complementary corrective demonstration system applied on
biped walk is depicted in Fig. 6.

Considering the open-loop playback walk with the ad-
vice operator improvement as the underlying algorithm, the
next step is to close the loop by adding a mechanism to mod-
ify the open-loop walk cycle during the autonomous execu-
tion according to the feedback received from the system. In
the remainder of this section, we first present our corrective
demonstration setup, elaborating on the implementation de-
tails. We then present two different correction methods for
forward walking along with a simplified inverse kinematics
model for the Nao.

4.1 Corrective Demonstration Setup for Biped Walking

A major challenge in providing corrective demonstration for
the biped walking process is to find a proper way of deliv-
ering the demonstration as fast as possible without physi-
cally contacting the robot. Fast delivery is needed because
biped walk is such a delicate dynamic process that it might
be too late to recover from a balance loss if the robot receives
the provided correction signal with a significant delay. An-
other problem with late delivery is that in such a case the
received demonstration is associated with the wrong set of
sensory data; hence, it results in an erroneous association of
the demonstration points with the state information in the
policy generation process. The necessity of delivering the
demonstration without touching the robot also stems from
the delicate dynamics of the biped walking process since in-
terfering with those dynamics of the robot affects the learned
policy negatively.

We utilize a wireless control interface using the com-
mercially available Nintendo Wiimote game controller [23]
to deliver corrective demonstration to the robot. Both the
Wiimote controller and its Nunchuk extension are equipped
with accelerometers measuring the acceleration of the con-
trollers as well as allowing their absolute roll and pitch ori-
entations to be computed. Therefore, the Wiimote with its
extension has four measurable axes allowing four different
correction signals to be delivered simultaneously. The com-
puted roll and pitch angles are in radians and they use the
right-hand frame of reference.

We use a custom developed software framework for de-
livering the correction signal received from the Wiimote by
the host computer to the robot over wireless Ethernet con-
nection as fast as possible (Fig. 6). The custom software also
provides the demonstrator an interface to define scaling and
shifting operators on the received signals from the Wiimote
before transmission to the robot, allowing the demonstra-
tion signal to be scaled up or down. By scaling down the
demonstration signals, it is possible to reduce the undesir-
able noise factors like trembling hands of the demonstrator.
The position of the Wiimote which is connected to the host
computer over a Bluetooth connection is sampled and the
processed demonstration signals are transmitted to the robot
over a UDP connection via wireless network at a frequency
of 1KHz; therefore, even if some of the UDP packets are
dropped due to the network conditions, we can still deliver
the demonstration signal packets at around 50Hz, which is
the update frequency for the sensors and the actuators of the
robot.

The demonstrator delivers the corrective demonstration
signals to the robot by changing the orientations of the Wi-
imote and the Nunchuk controllers in real time while the
robot is walking using the open-loop walk cycle. We record
the received correction signals during the demonstrations



7

Fig. 6 The diagram for the complementary corrective demonstration framework along with the biped-walk specific parts shown within the main
components.

synchronously with the rest of the sensor readings at 50Hz.
The Nunchuk extension and the Wiimote control the left and
the right side corrections on the robot, respectively (Fig. 7).
We define two different methods for converting the Wiimote
signals into the correction signals to be applied on the robot:

• Applying correction signals in the joint space by means
of direct modifications to the joint commands.

• Applying correction signals in the task space by means
of feet position displacements.

Fig. 7 A snapshot from a demonstration session. A loose baby harness
is used to prevent possible hardware damage in case of a fall. The har-
ness neither affects the motions of the robot nor lifts it as long as the
robot is in an upright position.

4.2 Applying Correction in the Joint Space

In this correction method, we associate the four correction
signals received from the demonstrator to the four individ-

ual joints on the hip. Namely, we use the hip roll and the hip
pitch joints to apply the correction signals. To provide a finer
control ability to the demonstrator, a scaling factor γ is ap-
plied on the Wiimote readings using the interface described
above for scaling the demonstration signals before they are
transmitted to the robot. We used γ = 0.1 in our implemen-
tation. The received roll corrections are applied on the hip
roll joints and the received pitch corrections are applied on
the hip pitch joints. The following correction values are ap-
plied on the ankle roll and the ankle pitch joints to keep the
feet parallel to the ground:

CAnkleRoll = −CHipRoll

CAnklePitch = −CHipPitch

At each timestep, we compute the correction values for
all joints j ∈ Joints using the defined correction functions.
We then add the calculated values to the joint command val-
ues in the walk cycle for that timestep before sending the
joint commands to the robot. The correction is applied to
the system at each mth timestep where 1 ≤ m ≤ T where
T is the length of the walk cycle in timesteps.

Fig. 8 Applying correction in the joint space. Rolling the Wiimote to
the right transitions the robot from its neutral posture (1) to a posture
bent along the Y axis (2). Similarly, tilting the Wiimote forward tran-
sitions the robot from its neutral posture (3) to a posture bent along the
X axis (4).
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4.3 Applying Correction in the Task Space

In this correction method, we modify the feet positions in
the 3D space with respect to the torso center by mapping
the received correction values to the offsets along the X-Y
plane instead of applying the correction signals directly to
the joints. At each timestep of playback, the vector of joint
command angles for that timestep is used to calculate rel-
ative positions of the feet in 3D task space with respect to
the torso using forward kinematics. The calculated correc-
tions (in the autonomous mode), or the received corrections
(during the demonstration) are applied on the feet positions
in 3D space and the resulting feet positions are converted
back into a vector of joint command angles using inverse
kinematics and sent to the robot (Fig. 9).

Fig. 9 Applying correction in the task space as feet position displace-
ment. Rolling the Wiimote to the right takes the right leg of the robot
from its neutral posture (a) to a modified posture along the Y axis (b).
Similarly, tilting the Wiimote forward brings the right leg of the robot
from its neutral posture (c) to a modified posture along the X axis (d).

Due to the physically coupled hip-yaw joints of the Nao,
inverse kinematics for feet positions cannot be calculated in-
dependently for each foot. Graf et al. propose an analytical
solution to inverse kinematics of the Nao, presenting a prac-
tical workaround for the coupled hip-yaw pitch joints con-
straint [17]. We used a simplified version of this approach by
assuming the hip-yaw joints to be fixed at 0 degrees for the
straight walk. The desired position Pos of the foot with re-
spect to the hip joints is given in the form of a homogeneous
transformation matrix.

We assume a stick figure model for the feet as shown in
Fig. 10. The thigh and the tibia (upper and lower leg parts)
form a triangle with the imaginary edge dfoot which rep-
resents the distance of the foot from the hip. This distance
equals the magnitude of translation vector t and can easily
be calculated as dfoot = |t|. The angle β between the up-
per and lower leg parts can be calculated using the law of
cosines.

d2foot = l2thigh + l2tibia + 2lthighltibia cosβ

β = arccos
l2thigh + l2tibia − d2foot

2lthighltibia

Fig. 10 Kinematic configurations for the legs of the Nao robot.

where lthigh and ltibia are the length of the thigh and the
tibia, respectively. When the leg is fully extended, the knee
pitch joint angle αKneePitch = 0; therefore, the resulting
angle for knee pitch is calculated as αKneePitch = π − β.
The angle between lower leg and foot plane constitutes the
first part of the final ankle pitch angle and can be computed
by the law of cosines.

γ = arccos
l2tibia + d2foot − l2thigh

2ltibiadfoot

The second part of the ankle pitch angle is calculated using
the components of the translation vector

θ = atan2(tx,
√
t2y + t2z)

where, atan2(y, x) calculates the angle between the X axis,
and the point (x, y).

The final ankle pitch angle value is the sum of its two
components; that is, αAnklePitch = γ+θ. The hip roll angle
value is also calculated using the translation vector. Similar
to the hip pitch joint, its final angle value is equal to the
exterior angle value; that is, αHipRoll = π − atan2(ty, tz).
The value of the ankle roll angle is the difference between
the desired absolute orientation of the foot along the X axis
(calculated using the rotation matrix part of Pos), and the
calculated hip roll joint angle value

αAnkleRoll = arcsin(p32)− αHipRoll

where p32 is the third row and the second column of Pos.
Finally, the hip pitch angle value is calculated as

αHipPitch = −(αKneePitch + αAnklePitch)

Any given valid joint command vector satisfying the as-
sumptions stated at the beginning of this subsection can be
converted into the relative positions of the feet in the 3D task
space using the method described above.
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5 Closed-Loop Walking Using Playback And Corrective
Demonstration

With the correction methods described in the previous sec-
tion, we can collect demonstration data consisting of the
sensory readings representing the state of the system as it
is perceived by the robot, and the correction values provided
by the demonstrator based on her observation of the state of
the robot. To obtain a closed-loop gait, we need a function
that associates the current state of the robot as it is perceived
by the robot to the corresponding demonstration values so
that we can use that association to infer the appropriate cor-
rection values to be applied for a given system state. We
use the sensors on the robot to estimate the current state of
the robot. The changes in sensor readings when the robot is
about to lose its balance (Fig. 11) are used to derive a correc-
tion policy by mapping these changes to corrective feedback
signals.

Fig. 11 Sample torso orientation and accelerometer readings: a) a sta-
ble walk sequence, and b) a walk sequence where the robot starts losing
its balance after around 200th timestep.

Due to the noisy nature of the sensors, fluctuations may
occur in the sensor readings and that may result in jerky mo-
tions that lead to loss of balance when the correction values
calculated as a function of the sensor readings are applied
to the joints directly. Therefore, the readings need to be fil-
tered. Running mean and median smoothers are widely used
methods for filtering noisy data. In running smoothers, the
data point in the middle of a running window of size N is re-
placed with the mean or the median of the data points lying
within that window. The filtered signal gets smoother as the
window size increases. The delicate trade-off in filtering lies
in the selection of an appropriate window size for smoothing
the data just enough to filter out the noise without rendering
the patterns in the data hard to detect.

We evaluated the running mean and median smoothers
with window sizes 5 and 10 (Fig. 12), and decided to use a

running mean filter with window size 5 since it filters out the
noise reasonably well and is computationally cheaper than
the running median filter. Also, considering our sensor sam-
pling rate is 50 Hz, we can still detect a significant change
in the sensor readings in at most 1/10th of a second.

Fig. 12 Results of applying various smoothers on an example ac-
celerometer data: a) the raw data, b) median smoother with window
size 5, c) median smoother with window size 10, d) mean smoother
with window size 5, e) mean smoother with window size 10.

We present two different sensor-correction association
methods:

• Associating a single sensor with joint space correction
• Associating multiple sensors with task space correction

5.1 Associating a Single Sensor with Joint Space
Correction

In this method, we apply the correction on individual joints,
and we define the correction value for a joint as a function
of a single sensor reading. We use the accelerometer read-
ings along the X and Y axes as the sensory input. Each point
in the resulting demonstration dataset is a tuple <

−→
S ,
−→
C >

where
−→
S = {AccX , AccY } is the vector of accelerometer

readings, and
−→
C = {Cleft

roll , C
left
pitch, C

right
roll , Cright

pitch } is the
vector of received correction values for the left hip roll, the
left hip pitch, the right hip roll, and the right hip pitch joints,
respectively. The accelerometers on the Nao can measure
accelerations in the range [−2g, 2g] where g is the standard
gravity and their readings are integer values in the interval
[−128, 127]. To model the noise associated with the demon-
stration data, we fit a normal distribution on the correction
data points received for all 256 values of the accelerometer.
The resulting distributions versus the accelerometer read-
ings populated using approximately 6000 correction points
out of about 30000 points recorded in a single demonstration
session of roughly 10 minutes are given in Fig. 13.

Any discontinuity or a sudden change in the correction
signal causes a jerky movement of the robot and further con-
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(a) Acc. X vs. Left Side Roll (b) Acc. X vs. Right Side Roll

(c) Acc Y vs. Left Side Pitch (d) Acc Y vs. Right Side Pitch

Fig. 13 The normal distributions fit on the received correction data versus the accelerometer readings for the single sensor - joint space correction
association. The bold points in the middle denote the mean, and vertical lines denote the variance of the normal distribution fit on that sensor value
interval.

tributes to the loss of balance. To deal with it, the correction
is modified to be a mapping from the sensory reading to the
mean of each joint command to be corrected, namely, the
left hip roll, the left hip pitch, the right pitch, and the right
hip roll. During autonomous execution, given the perceived
sensory data, the corresponding mean value is added to the
walk cycle commands. The computed correction values are
applied to the walk cycle commands at each N th timestep,
where N is a predefined value that does not change during
the execution. The pseudo-code of that process is given in
Algorithm 1.

In addition, we defined a hand-tuned simple linear func-
tion to be used as a benchmark closed-loop gait in our ex-
periments. We use the roll and the pitch angles of the torso,
calculated by the inertial measurement unit as the sensor
readings and associate them with the hip roll and the hip
pitch joints. The inertial measurement unit returns the roll
and pitch orientations of the torso in radians with respect
to the ground. The used linear coupling functions are of the
form C = AX + B where A is a gain value, B is an off-
set value, X is the sensor reading, and C is the calculated

Algorithm 1 Closed-loop walking using single sensor-joint
space correction association.

t← 0
loop

S← readSensors()
S← smoothen(S)
for all j ∈ Joints do

if timestep MOD correctioninterval = 0 then
Cj = Correction(S, j)

else
Cj = 0

end if
NextActionj ← wcjt + Cj

end for
t← t+ 1 (mod T )

end loop

correction value. For the four hip joints to be corrected, we
have four functions with individually set A and B values.
We hand-tuned the parameters of these four functions using
expert knowledge and visual observation of the robot walk-
ing. The resulting hand-tuned policy provided an improve-
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ment over the initial open-loop walk. Details of the results
are given in the Results section.

5.2 Associating Multiple Sensors with Task Space
Correction

In this method, the correction values received during the
demonstration are recorded synchronously with the sensory
readings, tagged with the current position in the walk cy-
cle. Each point in the resulting demonstration dataset is a
tuple < t,

−→
S ,
−→
C >, where t is the position in the walk

cycle at the time when this correction is received,
−→
S =

{AccX , AccY } is the vector of accelerometer readings, and
−→
C = {Cleft

X , Cleft
Y , Cright

X , Cright
Y } is the vector of received

correction values for the left foot along the X axis, the left
foot along the Y axis, the right foot along the X axis, and
the right foot along the Y axis, respectively.

We utilize locally weighted regression with a Gaussian
kernel [7] for generalizing a policy using the recorded cor-
rection and sensor values. For each received sensor reading
vector

−→
S , we calculate the correction vector

−→
C as follows:

di(t) = e−
√

(
−→
S−

−→
Si(t))TΣ−1(

−→
S−

−→
Si(t))

−→
C (t) =

∑
i

di(t)
−→
Ci(t)∑

i

di(t)

where Σ is the covariance matrix of the sensory readings
in the demonstration set,

−→
Ci(t) is the ith received correction

signal for the walk cycle position t,
−→
Si(t) is the ith sensory

reading for the walk cycle position t,
−→
S (t) is the current

sensory reading,
−→
C (t) is the calculated correction value to

be applied, and t is the current position in the walk cycle.
The calculated correction values are applied only if any

of the sensor values are not in the range µt ± Kσt (i.e., if
an abnormal value is read from that sensor, meaning that the
robot is losing its balance) where K is a coefficient, and t

is the current position in the walk cycle. In our implementa-
tion, we chose K = 3 so the correction values are applied
only if the current sensory readings are outside the range
µs(t)∓ 3σs(t), corresponding to the %99 of the variance of
the initial sensory model given in Section 3.1. The pseudo-
code for multiple sensors - feet position displacement asso-
ciation is given in Algorithm 2.

6 Results

To evaluate the performance of the proposed methods, we
conducted a set of walking experiments on a flat surface cov-
ered with carpet. We used the walking algorithm proposed

Algorithm 2 Closed-loop walking using multiple sensors-
task space correction association. Posleft and Posright are
the positions of the feet in 3D space.

t← 0
loop
−−→
S(t)← readSensors()
−−→
S(t)← smoothen(

−−→
S(t))

Posleft, Posright ← forwardKine(wct)
if (µs(t)−Kσs(t) ≤ Ss(t) ≤ µs(t) +Kσs(t)) then

Cleft, Cright ← 0
else

Cleft, Cright ← correction(
−−→
S(t))

end if
Posleft ← Posleft + Cleft

Posright ← Posright + Cright

NextAction← inverseKine(Posleft, Posright)
t← t+ 1 (mod T )

end loop

by Liu and Veloso as the black-box algorithm [20]. The du-
ration of the extracted walk cycle is 52 individual timesteps,
approximately corresponding to one second.

We evaluated different combinations of the proposed cor-
rection, sensory association, and policy derivation methods
as follows:

(a) OL :
Initial open-loop playback walk.

(b) OL+JS+SS+HT+FC :
Closed-loop playback walk with the joint space correc-
tion policy (JS) using hand-tuned (HT) single sensor-
correction association (SS) on top of the original open
loop walk cycle (OL), and the fixed frequency applica-
tion of the correction (FC) twice a walk cycle (N = 26).

(c) OL+JS+SS+NF+FC :
Closed-loop playback walk with the joint space correc-
tion policy (JS) using single sensor-correction associa-
tion (SS), normal distribution fit (NF) on top of the orig-
inal open loop walk cycle (OL), and the fixed frequency
application of the correction (FC) twice a walk cycle
(N = 26).

(d) OL+AO :
Open-loop playback walk cycle (OL) after offline im-
provement using advice operators (AO).

(e) OL+AO+TS+MS+LWR+AC :
Closed-loop playback walk with the task space correc-
tion policy (TS) using multiple sensors - correction asso-
ciation (MS), locally weighted regression (LWR) as the
policy extraction method on top of the advice improved
walk cycle (OL+AO), and the application of the correc-
tion under state anomaly (AC), in other words, when the
sensory readings go beyond the ±3σ of the normal sen-
sory readings (Fig. 4).

We used two benchmark combinations (case (a) and case
(b)), the former being the base case and the latter being
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a simple closed-loop method with hand tuned parameters
as described in Section 5.1. For each combination, we per-
formed 10 runs and measured the distance traveled before
falling. The results are given in Fig. 14 as boxplots, where
the lines within the boxes mark the mean, the marks at both
ends of boxes indicate minimum and maximum distances,
and the left and right edges of boxes mark 25th and 75th per-
centiles, respectively. The black bar at the bottom of the fig-
ure marks 7.2 meters, which is the longest possible straight
walk distance on a regular RoboCup SPL field which is sized
6 meters by 4 meters.

1 2 3 4 5 6 7 8 9 10 11

e)

d)

c)

b)

a)

Distance (m)

Fig. 14 Performance evaluation results: a) OL, b)
OL+JS+SS+HT+FC, c) OL+JS+SS+NF+FC, d) OL+AO, e)
OL+AO+TS+MS+LWR+AC. The black bar at the bottom marks
7.2 meters, the longest straight walk distance on a regular RoboCup
SPL field.

During three demonstration sessions of 28 minutes, a to-
tal of about 83000 demonstration points are recorded for
both joint space and task space corrections, and 25428 of
them corresponding to about 489 walk cycles are selected as
good examples of corrective demonstration by visually in-
specting the demonstration data based on the changes in the
sensory readings towards the recovery of balance.

The mean and maximum distances that the robot could
travel using the initial open loop benchmark walk (case (a))
were 2.03 and 3.27 meters, respectively, while the mean and
the maximum distances the robot was able to travel using
the closed loop benchmark walk (case (b)) were 4.32 and
6.89 meters, respectively. The performance difference be-
tween the two benchmark cases stems from the fundamental
difference between the open-loop and the closed-loop con-
trol paradigms under the presence of uncertainty and noise
in the environment.

All of the combinations involving proposed methods out-
performed the benchmark cases (a) and (b). The combina-
tion (c) which is directly comparable to the combination (b)

demonstrated considerable improvement over (b), reaching
a maximum traveled distance of 9.56 meters with a mean
traveled distance of 5.39 meters3. The improvement in the
performance could be accounted for the non-linear relation-
ship between the computed means for the received correc-
tion and the accelerometer readings (as seen in Fig. 13),
which could not be captured appropriately by the assumed
linear relation function in the hand tuned case.

The open-loop walk improved with advice operators (d)
outperformed the closed-loop case (c), reaching a maximum
traveled distance of 11.27 meters with a mean traveled dis-
tance of 6.92 centimeters. During the advice operator im-
provement, the teacher continuously observes the robot and
gives high level advice which corresponds to a systematic
correction to the walk cycle. Taking a closer look at the
mean correction values in Fig. 13, we see that the mean val-
ues are off from the zero position by a fixed offset in ad-
dition to the nonlinear relation of the sensory readings to
the received correction value. This offsets are results of the
implicit high level correction of the same systematic error
by the demonstrator. An explanation for why the improved
open loop walk did better compared to case (c) could be that
it is easier to focus on the “big picture” and hence to spot
the systematic error when the teacher is solely observing the
robot rather than being actively involved in delivering real-
time correction to the robot.

Despite the fact that the application of the advice oper-
ators on the walk cycle resulted in a considerably improved
walk performance with the maximum and mean traveled dis-
tances of 11.37 (the maximum length of the available ex-
perimentation area) and 8.34 meters, respectively, the last
case (case (e)) shows that there is still room for improve-
ment with the real-time corrective demonstration over the
improved open-loop walk.

Although the results suggest that the more complex op-
tions for the correction type (task space correction instead of
joint space correction), sensor-correction association (mul-
tiple sensors - task space correction association instead of
single sensor - joint space correction association), policy
derivation method (locally weighted regression for the in-
dividual timesteps within the walk cycle instead of fitting
normal distributions for the whole walk cycle), and the ap-
plication of the correction (applying correction only if the
current perceived state differs from the normal values in-
stead of applying correction at each N th timestep regardless
of the sensory readings) yielded better performance, we do
not possess enough experimental evidence to claim such su-
periority. The main motivation of this study was to answer
the question of whether it would be possible to improve the
performance of a system using human demonstration if a

3 The open-loop walk performance was comparable to the perfor-
mance of the original ZMP-based walk, which was not available to be
accounted for in this empirical comparison.
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solution to the problem with partial success exists and avail-
able as a black box. Therefore, we left the comparison of all
the individual components against each other in all possi-
ble settings (e.g., evaluating two policy extraction methods
against each other by keeping all other components the same
for all possible combinations of the other components) as fu-
ture work.

7 Conclusions

In this article, we presented an approach that incorporates
corrective human demonstration for improving the perfor-
mance of an existing partially successful system for per-
forming a low-level task and its application on improving
the walk stability of the Nao humanoid robot using correc-
tive human demonstration. We analyzed the Nao robot in
terms of the variations of joint commands and sensor read-
ings. The key question we tried to answer was whether it
would be possible to improve the performance of an exist-
ing controller for performing a complex skill on a complex
robotic platform without knowing the underlying technical
details of the existing controller. We tackled the problem by
making use of a human teacher who is able to externally ob-
serve the robot performing the skill using the existing con-
troller. We utilized corrective human demonstration given
in two phases (first offline and then in real-time) to learn a
policy for modifying the joint commands in the open-loop
walk cycle during the autonomous execution in such a way
to keep the robot balanced.

Our method plays back a single walk cycle extracted
from an existing walk algorithm to obtain an open-loop walk
behavior. We introduced an offline method using advice op-
erators to improve the stability of the open-loop walk cy-
cle. We utilized the data collected from the real-time correc-
tive human demonstration delivered using a Wiimote wire-
less game controller and smoothened sensory readings of the
robot to learn the appropriate correction values to the joint
commands of the open-loop walk. We proposed two cor-
rection methods, one in joint space and one in task space,
two methods for associating the received corrections with
the state of the robot at the time of reception, two differ-
ent policy extraction methods, and two methods for deciding
when to apply the correction signal to the system during the
autonomous execution. We presented experiment results for
different scenarios using different combinations of the pro-
posed methods, demonstrating a performance improvement
over the initial open-loop walk after we applied the correc-
tion calculated using the proposed methods. We discussed
the experimental results in detail, proposing possible expla-
nations for the comparison of the performances of different
combinations.

Addressing the delay between the perception and the ac-
tuation of the demonstrator, generalizing the proposed ap-

proach to a multi-phase learning framework applicable to
other skill learning problems, investigating better policy deri-
vation methods, assessing the demonstration quality and in-
corporating this information into the policy learning pro-
cess, relaxing the flat surface assumption to cope with un-
even terrain, and extending the balance maintenance capa-
bility to endure against moderate disturbances in adversarial
domains (e.g., getting pushed in a robot soccer game) are
among the issues we aim to address in the future.
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