# **Complementary Corrective Demonstration for Task Refinement**

**Carnegie Mellon** 



**Cetin Meriçli<sup>1</sup>, Manuela Veloso<sup>1</sup>, and H. Levent Akın<sup>2</sup>** 

<sup>1</sup>Computer Science Department, Carnegie Mellon University <sup>2</sup>Department of Computer Engineering, Boğaziçi University {cetin, veloso}@cmu.edu, akin@boun.edu.tr



# Introduction

- We introduce the notion of **Complementary Corrective Demonstration**.
- Human feedback is used to provide corrections to an algorithm for a given state.
- We also introduce the notion of Multi-Resolution Task Execution for reducing the computational cost of task execution.
- We present formal models and experimental evaluation results for the proposed approaches.

## **Model Plus Correction** (M+C)



# **Multi-Resolution Model Plus Correction (MRM+C)**

- MRM+C combines M+C and MRTE.
- Each detail resolution is an M+C instance.
- The arbitrator policy and corrections to the individual algorithms are learned from demonstration.



Att a second of the second att the

is an approach for • M+C complementing an algorithm with corrective human feedback.

A set of corrections to the algorithm from learned are demonstration.

The policy reuse function computes a final action to be executed.



# **Multi-Resolution Task Execution (MRTE)**

• Consists of different algorithms running at various detail resolutions. • The arbitrator policy is from learned human demonstration.

• MRTE learns when to use which detail resolution.



## **Multi-Resolution Task Refinement: Obstacle Avoidance Task**

• The aim is to reach the opponent goal without bumping into the obstacles placed on the field.

• We defined 3 detail resolutions with different algorithms and state-action representations.

• We evaluated the individual algorithms

(M), M+C instances, MRTE, and MRM+C. An example obstacle configuration for the obstacle avoidance task

- We ran 100 trials per method using randomly changed obstacle configurations.
- We used the task completion rate as the success metric.





## **Single Resolution Task Refinement: Ball Dribbling Task**

• The aim is to score a goal without the robot or the ball touching the stationary robots placed on the field.

- Two actions:
  - shoot to kick the ball towards the opponent goal
  - dribble to roll the ball in a more controlled manner



An example obstacle configuration used in the experiments

- We used a regular RoboCup Standard Platform League field, and Aldebaran Nao humanoid robots in our experiments.
- We evaluated the proposed approach using 3 different obstacle configurations and we performed 5 trials per configuration.

Hand-coded algorithm







**Fine Resolution** 

State representation for the same situation in different detail resolutions



![](_page_0_Figure_51.jpeg)

The illustration of the performance evaluation run for the example configuration shown above. Different colors denote different runs. The dashed lines represent dribbles, and the solid lines represent shoots.

|            | Configuration #1 |     | Configuration #2 |     | Configuration #3 |     |
|------------|------------------|-----|------------------|-----|------------------|-----|
|            | Μ                | M+C | Μ                | M+C | Μ                | M+C |
| Mean       |                  |     |                  |     |                  |     |
| Completion | 161              | 94  | 185              | 112 | 134              | 116 |
| Time (sec) |                  |     |                  |     |                  |     |

Average task completion times per algorithm and obstacle configuration

#### Summary

- We introduced the Complementary Corrective Demonstration concept to correct and modify a robot controller without modifying the underlying algorithm.
- It is particularly suitable for mass deployment and lifelong learning scenarios as it allows the robots to be deployed with a default set of skills, and enables the users to modify and correct the robot behaviors as needed.
- We also presented a multi-resolution approach for running different algorithms with different complexities depending on the difficulty of a given situation.
- This approach reduces the computational footprint of a robot controller without drastically suffering from performance degradation.

#### References

- Çetin Meriçli, Manuela Veloso, and H. Levent Akın. Improving Biped Walk Stability with Complementary Corrective Demonstration. Autonomous Robots, pp. 1–14, 2012
- Çetin Meriçli, Manuela Veloso, and H. Levent Akın. Task Refinement for Autonomous Robots using Complementary Corrective Human Feedback. International Journal of Advanced Robotic Systems, 2011
- Çetin Meriçli, Manuela Veloso, and H. Levent Akın. Multi-Resolution for Efficient Task Execution and Refinement. International Journal of Social Robotics (to appear), 2012.