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1 Introduction

The Cerberus team made its debut in RoboCup 2001 competition. This was
the first international team participating in the league as a result of the joint re-
search effort of a group of students and their professors from Boğaziçi University
(BU), Istanbul, Turkey and Technical University Sofia, Plovdiv branch (TUSP),
Plovdiv, Bulgaria. The team competed in Robocup 2001-2008 except the year
2004. Currently Boğaziçi University is maintaining the team. In 2005, despite
the fact that it was the only team competing with ERS-210s (not ERS210As),
Cerberus won the first place in the technical challenges. In the Robocup 2008 or-
ganization [1], a new league, named the Standard Platform League (SPL) [2], was
introduced. In this league, the Nao humanoid robots manufactured by Aldebaran
Robotics [3] are used as the standard robot platform and no hardware modifi-
cations are allowed as was the case for the 4-Legged League with Aibo robots.
Cerberus competed in both the 4-legged and the 2-legged categories of the SPL
in 2008 and made it to the quarterfinals, losing to the eventual champion in the
4-legged category.

The organization of the rest of the report is as follows. The software archi-
tecture is described in Section 2. In Section 3, the algorithms behind the vision
module are explained. Self localization method is given in Section 4. The loco-
motion module and gait optimization methods used are explained in Chapter 5
and the planning module is described in Section 6.

2 Software Architecture

Software architecture of Cerberus has been completely rewritten in 2008. The
existing modular architecture was transformed into a more general library archi-
tecture, where the code repository is separated into levels in terms of generality.
Similar to the well known Model-View-Control architecture, the main goal of this
new approach was to organize our code base into logical sections all of which
are easy to access, manipulate, and debug. The rewrite process was originally



targeting the Aibo platform but the well designed architecture has made our
initial development on Nao painless and quick.

Software architecture of Cerberus consists of mainly three parts:

– BOUNLib
– Cerberus Player
– Cerberus Station

2.1 BOUNLib

Past experience has demonstrated the previous modular approach to be sub-
optimal in some cases. Especially considering issues such as reuse of source code
for multiple architectures and also multiple purposes, making specific modifica-
tions to the special purpose modules becomes very time consuming and error
prone.

We have started collecting general parts of our code base in a library structure
called BOUNLib. Using this library will enable us to easily code for different
platforms or different robots by reusing most of our code base.

2.2 Cerberus Station

BOUNLib library includes a versatile input output interface, called BOUNio,
providing essential connectivity services to the higher level processes such as
reliable UDP protocol, file logging, and TCP connections. Connections are made
seamlessly to the sender, thus there is no need to write specific code for any
application or test case.

Using BOUNio library enabled us to implement a very general version of
our previous Cerberus Station using Trolltech’s Qt Development Framework [4].
Using the well structured architecture of our runtime code and Cerberus Station,
it is very easy to test new features to be added to the robot, which is a very
vital resource for any research experiment.

Cerberus Station is designed to have the same features of old Cerberus Station
and more, mainly aimed at visualizing the new library based code repository,
some of which are listed below:

1. Record and replay facilities providing an easy to use test bed for our test
case implementations without deploying the code on the robot for each run.

2. A set of monitors which enable visualizing several phases of image processing,
localization, and locomotion information.

3. Recording live images, classified images, intermediate output of several vision
phases, objects perceived, and estimated pose on the field in real time.

4. Log to file and replay at different speeds or frame by frame.
5. Locomotion test unit in which all parameters of the motion engine and spe-

cial actions can be specified and tested remotely.



3 Vision

3.1 Image Processing and Perception

The purpose of the perception module is to process the raw image and extract
available object features from the image (bearing and range if available). The
input to the module is the image in YUV422 format and the output is the range
and bearing features of objects seen on the field.

Color Quantization In the raw image format, each pixel is represented with
a three-byte value and can be one of the 2553 values. Since it is impossible
to efficiently operate on such an input space, the colors are quantized into a
smaller set of pseudocolors of white, green, yellow, blue, robot-blue, orange,red,
and “ignore”.

To efficiently get outputs from the trained GRNN network, a look up table
is constructed for all possible inputs. To look up the color group of a pixel, Y,
U, and V values are used to calculate the unique index and the value at that
index gives the color group ID. In Figure 1, output of a trained GRNN is tested
on a sample image.

Fig. 1. A classified image constructed with a trained GRNN.

3.2 Scanline Based Perception Framework

The most significant improvement over blob based systems is the increased rea-
soning possibilities. Using a single scanline, it is possible to detect a line segment
by simply tracking the change in color of the pixels on the scanline. Furthermore,
it is possible to combine information gained by multiple scanlines providing fur-
ther spatial information about the structures available in the current image. In
our previous blob based perception system such extensive and precise reasoning
was not possible.



Scanline perception framework is also more scalable. The complexity of the
system can be changed automatically in run time, by adjusting the number
of scanlines per image. Since only the pixels on the scanlines are segmented,
segmentation overhead of the blob based systems can also be avoided.

Inspecting a region of the image with a set of scanlines can provide a fast
and accurate method of reasoning about the confidence of the perception. Such
confidence values are very crucial for the performances of higher level modules.
Further probabilistic methods will be employed to increase utility of these con-
fidence values in the future.

In the following parts of this section, an overview of the implemented scanline
based perception methods are presented.

Vision Object The Vision object instantiates other perception methods after
generating some information which is required by all of the specialized perception
classes.

The image received from robot’s camera is first scanned with several scan-
lines. The number of these scanlines can be altered according to the viewing
angle of the camera, however currently this feature is left as future work.

Once pixels corresponding to the scanlines are segmented, this segmented
and ordered set of pixels are traversed once for important points, defined by
each specialized perception method. Selected subsets of the segmented pixels
are then sent to specialized perception classes for further processing and object
detection.

Goal Perception The goal of the scanline based goal perception is to detect the
goal bars individually so that multiple landmarks can be perceived from a single
goal. A four stage procedure is designed to achieve this purpose, which can be
used to perceive left and right goal bars individually. Due to the generic design
of the perception stages and the underlying scanline framework, implementing
top and bottom bars is only a task of mirroring left and right bar perceptors.
Similarly beacon perception will be only a variation of the bar perception.

Tests of the perceptor are done using the new version of the Cerberus Sta-
tion, a screen shot of which is shown Figure 3.2. Using this visual tool greatly
enhances the testing procedure. Employing the BOUNio library makes it possi-
ble to observe run time performance as well as to inspect recorded logs within
the goal perception tester tool.

Goal Target Perception Using the available scanline perception framework
it is quite easy to implement simple perceptions quickly having all the robust
properties of the scanline vision technique. Goal target perception presents a
good example for such a case.

In order to score a goal, a goal target perception is required, so that the robot
can shoot at the correct spot. Localization can generally be relied upon to figure
out the direction of the goal, however it can not be trusted for precise shooting
due to high level of noise.



Fig. 2. Detected goal posts

Line Perception Line perception is implemented in a similar fashion with the
goal target perception. The main vision object supplies the important points for
line perception, which are, in this case, defined as the mid point of a green-white
transition and a consecutive white-green transition on a single scanline.

“On Goal Line” Perception The most specialized perception is “on goal
line” perception which provides a signal to the goal keeper to help the robot
with its localization. Once the goal keeper roughly gets around the goal line,
it can be quite hard to get localized precisely. Since the opponent goal is quite
far away and generally obstructed, it can rarely be used in localization, which
degrades the performance of the localization.

Distance Calculations To calculate the distance of a visually observed object,
either a stereo vision system or using consecutive frames of single camera as
stereo vision is needed [5]. The Nao robot has a single camera but the sizes of
the objects in the environment are fixed and known. The distances of objects
can be inferred by the size feature of the objects. In visual observations, the size
of an object can be measured by the width or height of the object in pixels.
As the object gets closer, the size of the object in the image increases and this
increase has a nonlinear relationship with the actual distance of the object. In
our approach, we represent this relationship with the function y = a× (xb) + c
where y is the distance, x is the width or height of the object in pixels, and a, b
and c are parameters of the function.

4 Self Localization

Cerberus employs a vision based Monte Carlo Localization with a set of prac-
tical extensions (X-MCL) [6]. The first extension to overcome these problems
and compensate for errors in sensor readings is using inter-percept distance as
a similarity measure in addition to the distances and orientations of individual



percepts (static objects with known world frame coordinates on the field). An-
other extension is to use the number of perceived objects to adjust confidences
of particles. The calculated confidence is reduced when the number of perceived
objects is small and increased when the number of percepts is high. Since the
overall confidence of a particle is calculated as the multiplication of likelihoods of
individual perceptions, this adjustment prevents a particle from being assigned
with a smaller confidence value calculated from a cascade of highly confident
perceptions where a single perception with lower confidence would have a higher
confidence value. The third extension is related with the resampling phase. The
number of particles in successor sample set is determined proportional to the last
calculated confidence of the estimated pose. Finally, the window size in which the
particles are spread into is inversely proportional to the confidence of estimated
pose. This engine was used in both Aibo and Nao games.

4.1 World Modeling and Short Term Observation Memory

The perception module provides instantaneous information. While reactive be-
haviors like tracking the ball by head requires only instant information, other
higher level behaviors and localization module needs more.

The planning and localization modules require perceptual information with
less noise and more complete. The world modeling module should reduce sensor
noise and complete the missing state information by predicting the state. This
is a state prediction problem and we use the most common approach in the
literature, which is the Kalman Filter [7].

In our problem, the observations are distance and the bearing of the objects
with respect to robot origin, and the state we want to know is actual distance
and bearing information. In addition to the dynamic objects like the ball, the
state vector also includes distance change and bearing change information to
ease prediction.

For any object, the observation is z = {d, θ} where d and θ are distance
and bearing, respectively, to the robot origin. For the stationary objects, state
is m = {d, θ} and the state evolution model is m1

k+1 = I ∗mk and zk = I ∗mk

where k is time and I is the unit matrix.
For the dynamic objects, the observation is the same but state is represented

as m = {d, θ, dd, dθ} where dd is the change in distance in one time step and dθ

is the change in bearing likewise. The state evolution model is:
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As can be observed from the model specifications, we omit the correlation
between objects and separately execute filter equations for each object. If an
object is not observed for more than a pre-specified time step, the belief state is
reset and the object is reported as unknown. For our case, this time step is 270
frames for stationary objects and 90 frames for dynamic objects.

In the update steps, the odometry readings are used. The odometry reading
is u = {dx, dy, dθ} where dx and dy are displacements in egocentric coordinate
frame and dθ is the change in orientation. When an odometry reading is received,
all the state vectors of known objects are geometrically re-calculated and the
uncertainty is increased.

The most clear effect of using a Kalman Filter is that the disadvantage of
limited field of view is reduced. In the Figure 3, a robot pans its head and is
aware of three distinct landmarks at the same time.

Fig. 3. A robot pans its head and is aware of three distinct landmarks at the same
time.

4.2 Localization

The localization problem is a self pose estimation problem like in section 4.1,
and the widely used approach is the Monte Carlo Localization (MCL) algorithm
[8]. In this problem, the state to be estimated is µ = {x, y, θ}, where x and y are
global coordinates and θ is orientation of the robot. In MCL algorithm, belief
state is represented by a particle set and each element represents a possible pose
of the robot. In Figure 4, a sample belief state is given.

5 Motion

Our motion engine has three different representation infrastructures, which allow
different levels of abstractions. The first infrastructure contains a data structure,
named “Body”, which stores the physical properties of the robot as well as the



Fig. 4. Belief state of the robot in MCL algorithm. The best pose estimate is marked
in red color.

functions used for performing related calculations. The “Body” is composed of
several “Link”s, which are data structures for storing the joint positions, angles,
and related kinematic description parameters. Being platform independent and
generic, this infrastructure makes it possible to define new robot platforms via
some configuration files and allows controlling the joints of the robot platform
easily.

The second infrastructure is a hierarchical one. A root engine is defined at
the very top level and the common properties and functions of each different
motion engine are included in it. Different motion engines are inherited from the
root engine, and platform and motion algorithm specific parts are defined. For
Nao, four main features are implemented. The first one is to make the robot
perform a static walking in which the robot tries to keep the ground projection
of its Center of Mass (CoM) inside the support polygon. In addition to the
static walking feature, a dynamic walking feature is also implemented. A signal
generation-based algorithm, which is very similar to Central Pattern Generator
[9] is used. The motion of the head is separated from the motion of the rest of
the body and implemented as the third feature. The last feature is the motion
player, which reads the sequential joint angles from pose definition files and plays
them to realize some special actions, such as kicking the ball and standing up
from a fallen position.

The third infrastructure is a container for some common motion-related func-
tions. In addition to the matrix operations which are necessary for kinematics
calculations, implementations to read configuration files are also included as
common functions.



5.1 Bipedal Locomotion

Walking algorithms can be classified into two main groups; static walking and
dynamic walking. The main principle of static walking is to preserve stability
all the time during the motion, while dynamic walking is based on maintaining
the balance by using dynamic properties of the motion. There are mainly three
different methodologies;

– Zero-Moment Point (ZMP) Criterion [10] is very similar to CoM based
static walking. The only difference is that holding ZMP inside the support
polygon is enough to maintain the balance. Although it is a very common
method, it is computationally very expensive.

– Passive-Dynamic Walking (PDW) [11] where CoM is carried along the
motion direction, and the body moves along the motion direction because
of the gravity. The important point is the timing of the foot contact of the
swinging leg with the ground.

– Central Pattern Generators (CPGs) [9] method is based on the synchronous
movement patterns of the joints. For this purpose, a signal is assigned for
each joint, and the system is trained for synchronous patterns and balanced
locomotion as a whole.

Model-Driven CPG-Based Biped Walking A walking method based on
that of the champion of the Humanoid League in the RoboCup07, NimbRo [12],
is implemented. They defined three important features for each leg; leg extension,
leg angle, and foot angle. Leg extension is the distance between hip joint and
ankle joint. It determines the height of the robot while moving. Leg angle is
the angle between the pelvis plate and the line from hip to ankle. It has three
components; roll, pitch, and yaw. The third feature, foot angle, is defined as the
angle between foot plate and pelvis plate. It has only two components; roll and
pitch. Using these features helps us to have more abstract calculations for the
motion.

In order to find the leg angle and foot angle features, motion at each step is
divided into five sub-motions; shifting, shortening, loading, swinging, and balance.

In shifting sub-motion, lateral shifting of the CoM is handled. For this pur-
pose, a sinusoidal signal is simulated. The second important sub-motion is short-
ening signal and it is not always applied. During shortening phase, both a joint
angle for the foot and a part of the leg extension value are calculated as a co-
sine function of the shortening phase value. The third sub-motion of the step is
loading which is also not always applied. In this phase, only a part of the leg ex-
tension is calculated as that of shortening phase. Swinging is the most important
part of the motion. In this part, the leg is unloaded, shortened and moved along
the way of motion which reduces the stability of the system considerably. This
movement has effects on each component of the leg and the foot angle features
of the motion. As the last component of the step, balance, correction values for
the deviations of the other operations are added to the system from the foot
angle feature and the rolling component of the leg angle feature. At the end, the



corresponding parts of the sub-motions are added, and the values for the motion
features are calculated.

Aside from the implementation inspired from the work of the NimbRo team,
we have also developed a CPG-based custom algorithm for bipedal walking. In
our design, the main walking motion starts from the hip, specifically the roll
joint, which makes the body to swing from one side to the other. In order to
keep the feet parallel to the ground while swinging, the ankle roll joint angles
should be set to the negative of the value of the corresponding hip roll joint
angle. The periodic movement of the hip is obtained by using a sinusoidal signal
to be supplied as the hip roll joint angle. In order to realize this movement, the
hip roll and ankle roll angles are set according to the following equations.

θhiproll=Ahiproll
sin(period)

θankleroll=−Aankleroll
sin(period)

This motion is the basis of the entire walking since it passes the projection of
the center of mass from one foot to the other periodically, letting the idle foot
to move according to the requested motion command.

In order to make the robot perform a stepping motion, the pitch joints on
the leg chain should be moved. These joints again take sinusoidal angle values
which are consistent with the hip roll angle. The following equations illustrate
how the values of these angles are computed.

θhippitch
= Apitchsin(period) + θhiprest

pitch

θkneepitch
= −2Apitchsin(period) + θkneerest

pitch

θanklepitch
= Apitchsin(period) + θanklerest

pitch

The Apitch value determines how big the step is going to be. Obtaining back-
wards walk does not require much work but just reversing the iteration of the
period value, which is defined as 0 < period < 2π.

Similarly, making the robot move laterally is possible by setting the roll
angles instead of the pitch angles together with the knee pitch, while turning
around is possible by setting the hipY awPitch joint angles properly. The am-
plitudes Apitch, Aroll, Ayaw are multiplied with the corresponding motion com-
ponent, namely forward, left, turn which are normalized in the interval [−1, 1],
to manipulate the velocity of the motion. In order to make the robot move om-
nidirectionally, the sinusoidal signals that are computed individually for each
motion component are summed up and the final joint angle values obtained in
that way. For instance, it is possible to make the robot walk diagonally in the
north-west direction by simply assigning positive values to both the forward
and the left components.

6 Planner

The soccer domain is a continuous environment, but the robots operate in dis-
crete time steps. At each time step, the environment, and the robots’ own states



change. The planner keeps track of those changes, and makes decisions about the
new actions. Therefore, first of all, the main aim of the planner should be suffi-
ciently modeling the environment and updating its status. Second, the planner
should provide control inputs according to this model.

We have developed a four layer planner model, that operates in discrete time
steps, but exhibits continuous behaviors, as shown in Figure 5

Fig. 5. Multi-layer Planner.

The topmost layer provides a unified interface to the planner object. The sec-
ond layer deals with different roles that a robot can take. Each role incorporates
an “Actor” using the behaviors called “Actions” that the third layer provides.
Finally, the fourth layer contains basic skills that the actions of the third layer
are built upon. A set of well-known software design concepts like Factory Design
Pattern[13], Chain of Responsibility Design Pattern [14] and Aspect Oriented
Programming [15].

For coordination among the teammates and task allocation, we employ a
market driven task allocation scheme [16, 17]. In this method, the robots calcu-
late a cost value (their fitness) for each role. The calculated costs are broadcasted
through the team and based on a ranking scheme, the robots pick the most ap-
propriate role for their costs. Here, each team member calculates costs for its
assigned tasks, including the cost of moving, aligning itself suitably for the task,



and the cost of object avoidance, then looks for another team member who can
do this task for less cost by opening an auction on that task. If one or more of
the robots can do this task with a lower cost, they are assigned to that task,
so both the robots and the team increase their profit. Other robots take actions
according to their cost functions (each takes the action that is most profitable
for itself). Since all robots share their costs, they know which task is appropriate
for each one so they do not need to tell others about their decisions and they do
not need a leader to assign tasks. If one fails, another would take the task and
go on working.
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