
Cerberus’07 Team Description Paper

H. Levent Akın, Çetin Meriçli, Barış Gökçe, Barış Kurt, Can Kavaklıoğlu and
Abdullah Akçe

Boğaziçi University
Department of Computer Engineering

34342 Bebek, Ístanbul, TURKEY
{akin, cetin.mericli, sozbilir, abdullah.akce}@boun.edu.tr , bariskurt@gmail.com,

eposta@cankavaklioglu.name.tr

1 Introduction

The “Cerberus” team made its debut in RoboCup 2001 competition. This was
the first international team participating in the league as a result of the joint re-
search effort of a group of students and their professors from Boğaziçi University
(BU), Istanbul, Turkey and Technical University Sofia, Plovdiv branch (TUSP),
Plovdiv, Bulgaria [1]. The team competed also in Robocup 2002, Robocup 2003,
Robocup 2005 and Robocup 2006. Currently Boğaziçi University is maintaining
the team. In 2005, despite the fact that it was the only team competing with
ERS-210s (not ERS210As), Cerberus won the first place in the technical chal-
lenges. In 2006, we have carried out our success with old ERS-210s to the more
powerful ERS-7s by reaching the quarter finals. We lost only three games to the
eventual first, third and fourth place teams.

The software architecture of Cerberus mostly remained the same with the
last year. All of our modules are platform and hardware independent and our
development framework allows us to transfer from or to the robot any input,
output or intermediate data of the modules. This infrastructure enables us to
have a considerable speed-up during development and testing.

Boğaziçi University has a strong research group in AI. The introduction of
Robocup as a unifying theme for different areas of study in autonomous robots
has attracted many talented students and has accelerated research efforts with
many publications. Currently, the department has teams both in Robocup Sony
four legged and rescue simulation leagues.

2 The Proposed Approach

Software architecture of Cerberus consists of mainly two parts:

– Cerberus Station
– Cerberus Player



2.1 Cerberus Station

This is the offline development platform where we develop and test our algo-
rithms and ideas. The record and replay facilities allow us to test our imple-
mentations without deploying the code on the robot each time. It is developed
using Microsoft .NET technologies and contains a set of monitors which enable
visualizing several phases of image processing, localization, and locomotion in-
formation. It is possible to record live images, classified images, regions found,
objects perceived and estimated pose on the field in real time to a log file and
replay it in different speeds or frame by frame. Cerberus Station also contains
a locomotion test unit in which all parameters of the motion engine and special
actions can be specified and tested remotely. For debugging purposes, a telnet
client and an exception monitor log parser are also included in station. Since
each sub-module of the robot code is hardware independent, all modules can be
tested and debugged in station. This hardware and platform independence pro-
vides great save on development time when combined with advanced raw data
logging and playback system. Cerberus Station communicates with the robot
via TCP and uses a common serializable message structure for information ex-
change.

2.2 Cerberus Player

Cerberus Player is the part of the project that runs on the robots. Most of
the classes in Cerberus Player are implemented in a platform independent man-
ner, which means we can cross-compile them in various operating systems like
OPEN-R, Windows or Linux. Although, robot dependent parts of the code are
planned to run only on the robot, a simulation system for simulating locomotion
and sensing is under development. The software architecture of Cerberus Player
consists of four objects:

– Core Object
– Locomotion
– Communication
– Dock Object

Core Object The main part of the player code is the Core Object which coor-
dinates the communication and synchronization between the other objects. All
other objects are connected to it. The Core object takes camera image as its main
input and sends corresponding actuator commands to the locomotion engine.
It is the container and hardware interface of Vision, Localization and Planner
modules. This combination is chosen because of the execution sequence of these
modules. All of them are executed for each received camera frame and there is an
input-output dependency and execution sequence vision→localization→planner.

Communication Object Communication object is responsible for receiving
game data from the game controller and for managing robot-robot communica-
tion. They both use UDP as the communication protocol.



Dock Object Dock object is the object which manages the communication
between a robot and the Cerberus Station. It redirects the received messages
to Core Object and sends the debug messages to the station. Dock object uses
TCP to send and receive serialized messages to and from Cerberus Station.

2.3 Modules in Cerberus

Core modules in Cerberus are vision, localization, planner and locomotion and
due to our development policy, all of them are platform-independent so they
can be adapted to any platform supporting standard C++ easily by writing a
wrapper class for interfacing.

Fig. 1. Phases of image processing. a) Original image, b) Color classified image, c)
Found blobs, d) Percepted objects e) Egocentric view

Vision Module The vision module is responsible for information extraction
from received camera frames. The vision process starts with receiving a camera
frame and ends with a calculated egocentric world model consisting of a collection
of visual percepts as shown in Fig. 1.

Color Classification: This year, we continued to use Generalized Regres-
sion Network (GRNN) [2] for color generalization with an extension to cope with
the radial distortion in ERS-7 camera. Training process is similiar: First, a set
of images are hand labeled with proper colors. Then, a GRNN is trained with
the labeled data but instead of using only Y, U, V triplet, an extra dimension
indicating the euclidean distance of that pixel from the center of the image is



also used. After the training phase, the network is simulated for the input space
to generate a color lookup table for four bits (16 levels) of Y, six bits (64 levels)
of U, six bits of V and three bits (eight levels) of the radius. Eight levels for the
radius is sufficient, and eventhough it increases the memory requirement of the
lookup table from 64KB to 512KB,this is still reasonable. The resultant color
lookup table is very robust both to luminance changes and allows our vision
system to work without using any kind of extra lights other than the standard
ceiling fluorescents. With the introduction of distance component, effect of the
radial distortion is drastically reduced. According to our measurements, we can
play reasonably at an illumination level of 150-200 lux.

Having the radius as a paramter can be viewed as having eight separate color
classification tables, but providing the radius to the network as input also allows
the training of each one of the ring segments affect the others.

Fig. 2. The color classification. (a) and (d) Origional Images, (b) and (e) Radius levels,
(c) and (e) Classified images

Object detection: The classified image is processed for obtaining blobs. In-
stead of using run length encoding (RLE), we use an optimized region growing
algorithm that performs both connected component finding and region build-
ing operations at the same time. This algorithm works nearly two times faster
than the well known RLE-Find connected components-build regions approach.
Another novel approach used is the concept of a bounding octagon of a region.
Since the robot must turn its head in order to expand its field of view, it is
necessary to rotate the obtained image according to the actual position of the
head. However, since rotation is a very expensive operation, it is not wise to
rotate the entire image. For this reason typically only the identified regions are
rotated. Since octagons are more appropriate for rotation than boxes, using oc-
tagons instead of boxes to represent regions reduces the information loss due to
rotation.



Our vision module employs a very efficient partial circle fit algorithm for
detecting partially occluded balls and the balls which are on the borders of the
image. Since accuracy in the estimation of ball distance and orientation is needed
mostly in cases when the ball is very close and it is so often that the ball can
only be seen partially in such cases, having a cheap and accurate ball perception
algorithm is a must. An example partial ball perception is shown in Fig. 3

Fig. 3. An example partial ball perception

The line perception process is an important part of the vision module, since
it provides important information for the localization module. We use a Hough
Transform based line perception algorithm. The sample images from line per-
ception process are shown in Fig. 4.

This year, we have re-implemented our new goal perceptor using a scan based
method. The perception consist of two stages: scanning and voting

Half Scan-line: In order to determine the points on the bars, scan-line
method is used. For this purpose, a constant number of lines is chosen to scan
for the edge points. By scanning constant number of lines, complexity of the algo-
rithm is reduced very much. In addition to reduction on complexity by choosing
constant number of lines, region is scanned from boundaries of the region to the
middle (from left-most pixel to the middle and then right-most pixel to the mid-
dle, from top pixel to the middle and then from bottom pixel to the middle). If
the scan is successful before reaching to the middle, it continues with next scan.
The reason to modify scan-line method in such a way that there is more noise in
the middle. One additional problem of scanning is the noises on the bars. So, a
noise handling methodology should be added. In order to handle noises, instead
of single pixels, consequtive pixels are processed. The start of the consequtive
pixels is stored as the outerboundary of the bar while the end of the consequtive
pixels is stored as the innner boundary of the bar.

Quantized Voting: After the determination of the points at the boundaries
of the bars, the angles of the lines are calculated by using the quantized voting



Fig. 4. Phases of Line Detection. a) Original image, b) Color classified image, c) Per-
ceived lines e) Egocentric view

algorithm. For this purpose, 180 degree is divided into pieces according to the
step size. The value of the step size is calculated according to the space complex-
ity, because an array whose size is the same as 180/stepsize is generated to store
the votes on corresponding degrees. For each pair of the points on a boundary,
an angle is calculated and the corresponding angle is voted by one. During each
voting, the number of votes is compared with the number of the votes of the
maximum voted angle, and if it is bigger, the angle of the maximum votes and
the number of corresponding are changed, and the point is stored in order to be
able to represent the line. When all pairs have voted an angle, we will have the
angle and one point on this line. This information is enough to represent a line.
This process is applied for all the boundaries of each bar.

Localization Currently, Cerberus employs three different localization engines.
The first engine is an inhouse developed localization module called Simple Lo-
calization (S-LOC) [3]. S-LOC is based on triangulation of the landmarks seen.
Since it is unlikely to see more than two landmarks at a time in the current
setup of the field, S-LOC keeps the history of the percepts seen and modifies the
history according to the received odometry feedback. The perception update of



Fig. 5. Percepting the new goal on a highly occupied scene

the S-Loc depends on the perception of landmarks and the previous pose esti-
mate. Even if the initial pose estimate is provided wrong, it acts as a kidnapping
problem and is not a big problem as S-Loc will converge to the actual pose in a
short period of time if enough perception could be made during this period.

The second one is a vision based Monte Carlo Localization with a set of prac-
tical extensions (X-MCL) [4]. The first extension to overcome these problems and
compensate for the errors in sensor readings is using inter-percept distance as
a similarity measure in addition to the distances and orientations of individual
percepts (static objects with known world frame coordinates on the field). An-
other extension is to use the number of perceived objects to adjust confidences
of particles. The calculated confidence is reduced when the number of perceived
objects is small and increased when the number of percepts is high. Since the
overall confidence of a particle is calculated as the multiplication of likelihoods of
individual perceptions, this adjustment prevents a particle from being assigned
with a smaller confidence value calculated from a cascade of highly confident
perceptions where a single perception with lower confidence would have a higher
confidence value. The third extension is related with the resampling phase. The
number of particles in successor sample set is determined proportional to the last
calculated confidence of the estimated pose. Finally, the window size in which the
particles are spread into is inversely proportional to the confidence of estimated
pose.

The third engine is a novel contribution of our lab to the literature, Reverse
Monte Carlo Localization (R-MCL) [5].The R-MCL method is a self-localization
method for global localization of autonomous mobile agents in the robotic soccer
domain, which proposes to overcome the uncertainty in the sensors, environment
and the motion model. It is a hybrid method based on both Markov Localization
(ML) and Monte Carlo Localization (MCL) where the ML module finds the
region where the robot should be and MCL predicts the geometrical location
with high precision by selecting samples in this region (Fig. 6). The method is



very robust and requires less computational power and memory compared to
similar approaches and is accurate enough for high level decision making which
is vital for robot soccer. We will be using R-MCL as our localization engine in
2007.

Fig. 6. R-MCL Working Schema

Planner and Behaviors The soccer domain is a continuous environment, but
the robots operate in discrete time steps. At each time step, the environment,
and the robots’ own states change. The planner keeps track of those changes,
and makes decisions about the new actions. Therefore, first of all, the main aim
of the planner should be sufficiently modeling the environment and updating
its status. Second, the planner should provide control inputs according to this
model.

We have developed a four layer planner model, that operates in discrete time
steps, but exhibits continuous behaviors, as shown in Fig. 7

The topmost layer provides a unified interface to the planner object. The sec-
ond layer deals with different roles that a robot can take. Each role incorporates
an “Actor” using the behaviors called “Actions” that the third layer provides.
Finally, the fourth layer contains basic skills that the actions of the third layer
are built upon. A set of well-known software design concepts like Factory De-
sign Pattern[7], Chain of Responsibility Design Pattern [6] and Aspect Oriented
Programming [8].

For coordination among teammates and task allocation, we employ a market
driven task allocation scheme [9]. In this method, the robots calculate a cost
value (their fitness) for each role. The calculated costs are broadcasted through
the team and based on a ranking scheme, the robots chose the most appropriate
role for their costs. Here, each team member calculates costs for its assigned
tasks, including the cost of moving, aligning itself suitably for the task, and the



Fig. 7. Multi-layer Planner

cost of object avoidance, then looks for another team member who can do this
task for less cost by opening an auction on that task. If one or more of the robots
can do this task with a lower cost, they are assigned to that task, so both the
robots and the team increase their profit. Other robots take actions according
to their cost functions (each takes the action that is most profitable for itself).
Since all robots share their costs, they know which task is appropriate for each
one so they do not need to tell others about their decisions and they do not
need a leader to assign tasks. If one fails, another would take the task and go on
working.

The approach is shown in the flowchart given in Fig. 8. The robot with the
smallest score cost CES will be the primary attacker. Similarly the robot, except
the primary attacker, with the smallest Cdefender cost will be the defender. If
Cauctioneer is higher than all passing costs (Cbidder(i)) then the attacker will
shoot, else, it will pass the ball to the robot with the lowest Cbidder(i) value. The
cost functions used in the implementations are as follows:

CES = µ1.tdist + µ2.talign + µ3.cleargoal (1)
Cbidder(i) = µ1.tdist + µ2.talign + µ3.clearteammate(i) + CES(i), i 6= robotid (2)

Cauctioneer = CES(robotid) (3)
Cdefender = µ5.tdist + µ6.talign + µ7.cleardefense (4)



Fig. 8. Flowchart for task assignment

where robotid is the id of the robot, tdist is the time required to move for specified
distance, talign is the time required to align for specified amount, µi are the
weights of several parameters to emphasize their relative importance in the total
cost function, cleargoal is the clearance from the robot to goal area-for object
avoidance, cleardefense is the clearance from the robot to the middle point on
the line between the middle point of own goal and the ball-for object avoidance,
and similarly clearteammate(i) is the clearance from the robot to the position of
a teammate. Each robot should know its teammates score and defense costs. In
our study each agent broadcasts its score and defense costs. Since the auctioneer
knows the positions of its teammates, it can calculate the Cbidder(id=robotid) value
for its teammates.

The game strategy can easily be changed by changing the cost functions
in order to define the relative importance of defensive behavior over offensive
behavior, and this yields greater flexibility in planning, which is not generally
possible.

Locomotion We are using an object-oriented, inverse kinematics based omni-
directional motion engine. The motion of the robot is represented by eleven real-
valued hyper-parameters. For an effective locomotion, an optimum parameter
set should be found in this multi-dimensional parameter space. The problem
is that each parameter affects the others, but it is very difficult to find such
a function which determines the relationship between parameters. So, a search
engine is required to find the optimal parameter set. Genetic algorithms is used
very frequently as such a search engine. Previously, several versions of genetic



algorithms [11] were implemented in simulation environment. Since 2006, we
are using Evolution Strategy (ES) [12] in our search engine. We first run this
algorithm on simulator. The best parameters found in the simulation phase are
then used as the initial population of the fine tuning done on the real robot.

The most important facility of our ES engine is that it is implemented in a
very general manner. We are planning to use it for any search problem which can
be parameterized. We are planning to use it for other parameter optimization
problems like ball approaching and grabbing in this year.

Acknowledgements

This work is supported by Boğaziçi University Research Fund through projects
05A102D, 06HA102 and State Planning Organization through Project 03K120250.

References

1. Akın, H. L., “Managing an Autonomous Robot Team: The Cerberus Team Case
Study,” International Journal of Human-friendly Welfare Robotic Systems, Vol. 6,
No. 2, pp-35-40, 2005.

2. Schioler, H. and Hartmann, U., “Mapping Neural Network Derived from the Parzen
Window Estimator”, Neural Networks, 5, pp. 903-909, 1992.

3. Kose, H., , B. Çelik and H. L. Akın,, “Comparison of Localization Methods for a
Robot Soccer Team”, International Journal of Advanced Robotic Systems, Vol. 3,
No. 4, pp.295-302, 2006.

4. Kaplan, K. B. Çelik, T. Meriçli, Ç. Mericli and H. L. Akın, “Practical Exten-
sions to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain”
RoboCup 2005: Robot Soccer World Cup IX, A. Bredenfeld, A. Jacoff, I. Noda, Y.
Takahashi (Eds.), LNCS Vol. 4020, pp. 420 - 427, 2006.

5. Kose, H and H. L. Akın,“The Reverse Monte Carlo Localization Algorithm,”
Robotics and Autonomous Systems, 2007. (In press).

6. Anon., “Chain-of-responsibility pattern”, Wikipedia, 2007.
7. Anon., “Factory method pattern”, Wikipedia, 2007.
8. Anon., “Aspect-oriented programming”, Wikipedia, 2007.
9. Kose, H., K. Kaplan, Ç. Meriçli, U. Tatlıdede, and L. Akın,“Market-Driven Multi-

Agent Collaboration in Robot Soccer Domain”, in V. Kordic, A. Lazinica and M.
Merdan (Eds.), Cutting Edge Robotics, pp.407-416, pIV pro literatur Verlag, 2005.

10. http://lipas.uwasa.fi/cs/publications/2NWGA/node20.html
11. Meriçli, T., “Developing a Rapid and Stable Parametric Quadruped Locomotion

for Aibo Robots”, B.S. Thesis, Marmara University, 2005.
12. Beyer, H.-G., The Theory of Evolution Strategies, Springer, 2001.


