Cerberus’06 Team Report

' ¥y I
aI Uy

Jcgagici university. turkey

H. Levent Akin
Cetin Mericli
Barig Gokge
Fuat Geleri

Nuri Tagdemir
Bulug Celik

Artificial Intelligence Laboratory
Department of Computer Engineering
Bogazici University
34342 Bebek, Istanbul, Turkey
{akin, cetin.mericli, sozbilir, nuri.tasdemir, fuat.geleri}@boun.edu.tr
buluc_celik@hotmail.com

January 25, 2007

Contents

Acknowledgements
1 Introduction
2 Software Architecture
2.1 Cerberus Station
2.2 Cerberus Playero,
221 CoreObject
2.2.2 Communication Object
2.2.3 Dock Object
3 Vision Module
3.1 Color Classification
3.2 Finding Regions 0oL
3.3 Line Perception L.
3.4 Object detectiono
3.4.1 Object rotation
3.4.2 Ball identification
3.4.3 Sanitychecks Lo oL
4 Localization

4.1 My Environment

4.2

4.1.1
4.1.2
4.1.3
4.14

General Outlineof ME
Architecture of ME L.
Proceduresof ME
Advantages and Disadvantages of ME

S-LOC: Simple Localization

4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6
4.2.7

General Outline of S-Loc
Architecture of S-Loc
Procedures of S-Loc
Advantages and Disadvantages of S-Loc
General Outlineof ME
Architecture of ME
Proceduresof ME

ii

4.2.8 Advantages and Disadvantages of ME
4.3 S-LOC: Simple Localization
4.3.1 General Outline of S-Loc
4.3.2 Architecture of S-Loc
4.3.3 Procedures of S-Loco
4.3.4 Advantages and Disadvantages of S-Loc
Planning
5.1 Multi-Layer Planning00
5.1.1 Top Planning Layer
5.1.2 RoleLayer
5.1.3 Action Layer
514 BasicSkills
5.2 Fuzzy Inference Engine,
Motion
6.1 Kinematic Model oo o
6.2 Walking Styles
6.3 Omnidirectional Motion
6.3.1 Representing the Locus
6.4 Object-oriented Design
6.5 Parameter Optimization
Results
71 Games oo
7.2 Technical Challenges
7.2.1 Open Challenge.
7.2.2 Passing Challenge,
7.2.3 New Goal Challenge
References

ii

43
43
44
44
46
47
47

50
50
51
52
53
55
56

66
66
67
67
67
67

69

Acknowledgements

We gratefully acknowledge the support of our work by the Bogazigi Uni-
versity Research Fund through projects 01A101, 03A101D, and 05A102D,
State Planning Organization through Project 03K120250 and Bogazigi Uni-
versity Student Fund.

iii

Chapter 1

Introduction

The “Cerberus” team made its debut in RoboCup 2001 competition. This
was the first international team participating in the league as a result of the
joint research effort of a group of students and their professors from Bogazici
University (BU), Istanbul, Turkey and Technical University Sofia, Plovdiv
branch (TUSP), Plovdiv, Bulgaria. The team competed also in Robocup
2002, Robocup 2003, Robocup 2005 and Robocup 2006. Currently Bogazici
University is maintaining the team. In 2005, despite the fact that it was
the only team competing with ERS-210s (not ERS210As), Cerberus won
the first place in the technical challenges. This year, we have carried out
our success with old ERS-210s to the more powerful ERS-7s by reaching
the quarter finals. We lost only three games to the eventual first, third and
fourth place teams.

The software architecture of Cerberus mostly remained the same with
the last year. All of our modules are platform and hardware independent
and our development framework allows us to transfer from or to the robot
any input, output or intermediate data of the modules. This infrastructure
enables us to have a considerable speed-up during development and testing.

The organization of the rest of the report is as follows. The software
architecture is described in Chapter 2. In Chapter 3, the algorithms behind
the vision module are explained. The main localization algorithm is given in
Chapter 4. The planning module is described in Chapter 5. The Locomotion
module and gait optimization methods used are given in Chapter 6. The
results concerning the Soccer and Technical Challenge Competitions of the
Four Legged League of Robocup 2006 are discussed in Chapter 7.

Chapter 2

Software Architecture

Software architecture of Cerberus mainly consists of two parts:

e Cerberus Station

e Cerberus Player

In the next subsections we describe these parts.

2.1 Cerberus Station

This is the off-line development platform where we develop and test our
algorithms and ideas. The whole system is developed using Microsoft .NET
technologies and contains a set of monitors which enable visualization of sev-
eral phases of image processing, localization, and locomotion information.
We have included recording and replay facilities. It is possible to record live
images, classified images, regions found, perceived objects and estimated
pose on the field in real time to a log file and replay it in different speeds
or frame by frame. This allows us to test our implementations without de-
ploying the code on the robot each time. Cerberus Station also contains a
locomotion test unit in which all parameters of the motion engine and spe-
cial actions can be specified and tested remotely. For debugging purposes,
a telnet client and an exception monitor log parser are also included in the
station. Since each sub-module of the robot code is hardware independent,
all modules can be tested and debugged in the station. This hardware and
platform independence provides great savings on development time when
combined with the advanced raw data logging and playback system. Cer-
berus Station communicates with the robots via TCP and uses a common
serializable message structure for information exchange.

| Robot Hardware |
5
I::> T ‘ OVirtualRobotComm
< 2 1]
c
Game Controller = -
o E Core Object
- <::J> 3
- (@]
Teammates ©
@
£
Q=2
N
< :
o
Cerberus Station o] Motion

Figure 2.1: Cerberus Software Architecture

2.2 Cerberus Player

Cerberus Player is the part of the project that runs on the robots. Most of
the classes in Cerberus Player are implemented in a platform independent
manner, which means we can cross-compile them in various operating sys-
tems like OPEN-R, Windows or Linux. Although, robot dependent parts
of the code are planned to run only on the robot, a simulation system for
simulating locomotion and sensing is under development. The software ar-
chitecture of Cerberus Player consists of four objects:

e Core Object
e Locomotion

e Communication
e Dock Object

In the following subsections we describe these objects.

2.2.1 Core Object

The main part of the player code is the Core Object. This object coordinates
communication and synchronization between all the other objects that are
connected to it. Core Object takes the camera image as its main input
and sends the corresponding actuator commands to the locomotion engine.
Core Object is the container and hardware interface of Vision, Localization
and Planner modules. This combination is chosen because of the execution
sequence of these modules. All of them are executed for each received camera

frame and there is an input-output dependency and execution sequence that
is from wvision — localization — planner.

2.2.2 Communication Object

Communication Object is responsible for receiving game data from the game
controller and managing robot-robot communication. Both the game con-
troller and robot-robot communication infrastructure use UDP as the com-
munication protocol.

2.2.3 Dock Object

Dock Object is the object which manages the communication between a
robot and the Cerberus Station. It redirects the received messages to Core
Object and sends the debug messages to the station. Dock Object uses TCP
to send and receive serialized messages to and from Cerberus Station.

Chapter 3

Vision Module

The Vision module is responsible for information extraction from the re-
ceived camera frame. Image processing starts with receiving a camera frame
and ends with an egocentric world model consisting of a collection of visual
percepts as shown in Fig. 3.1.

e
i.v’!‘ "%:}
3
(b)
KLY
'
© d) | ©

Figure 3.1: Phases of image processing. a) Original image, b) Color classified
image, c¢) Found blobs, d) Perceived objects e) Egocentric view

3.1 Color Classification

Instead of using previously implemented color classification methods like
decision trees and nearest neighbor [1], we have implemented a Generalized

Regression Network (GRNN) [2] for color generalization [3]. After labeling
a set of images with the proper colors, a GRNN is trained with the labeled
data and after the training phase, the network is simulated for the input
space to generate a color look-up table for four bits (16 levels) of Y, six bits
(64 levels) of U, six bits of V and three bits (eight levels) of the radius. Eight
levels for the radius is sufficient, and eventhough it increases the memory
requirement of the lookup table from 64KB to 512KB,this is still reasonable.
This year, the addition of the radius improved the performance of the color
classification table dramatically, as the radial color distortion of the ERS-7
AIBOs is a serious problem for the rest of the vision module.

Having the radius as a paramter can be viewed as having eight separate
color classification tables, but providing the radius to the network as input
also allows the training of each one of the ring segments affect the others.

Figure 3.2: The color classification. (a) and (d) Origional Images, (b) and
(e) Radius levels, (c¢) and (e) Classified images

The resultant color lookup table is very robust to luminance changes and
allows our vision system to work without using any kind of extra lights other
than the standard ceiling fluorescents. Moreover, since no extra operation
is required at runtime, no performance losses arise due to radial distortion
correction. Fig. 3.2

3.2 Finding Regions

This sub-module is responsible for processing a labeled image and extracting
the potentially significant regions for the perception sub-modules. Here we
use a different approach. Instead of using run length encoding (RLE), we
use an optimized region growing algorithm that performs both connected
component finding and region building operations at the same time. This

algorithm works nearly two times faster than the well known RLE-Find
connected components-build regions approach.

The approach which uses RLE first runs RLE on the image, connects the
runs to find the connected components, filtering out potentially insignificant
components, and finally rotating the regions. Fig. 3.3 shows an RLE sample.

2

313
6 |7
9

—

5
9 0
211313
51616

Figure 3.3: An RLE sample

Our approach, on the other hand, uses a region growing algorithm di-
rectly on the raw image. Starting from leftmost top pixel, each pixel is
processed in the following manner:

e If it was not labeled, it receives a new label

e [t is compared with its consecutive pixel on the right. If they are of
the same color and the consecutive pixel is labeled with a different
label from the pixel which is being processed, then the labels of both
pixels are noted to be united. If they are of the same color and the
consecutive pixel has no label, then the consecutive pixel is labeled
with the same label with the pixel which is being processed.

e It is compared with its consecutive pixel at the bottom. If they are
of the same color, then the consecutive pixel is labeled with the same
label with the pixel which is being processed.

At this point, the sub-regions and notes indicating the subregions to be
combined are prepared in just one pass on the image. Next, the sub regions
are combined according to the prepared notes. Fig. 3.4 shows a sample with
the new approach.

21313 21313
21314 213 |7
6|3]4 337
7]|618|4 313|717
7]618 14 313|717

Before Merging After Merging
Figure 3.4: A sample with the new approach

After obtaining the combined sub-regions, they are filtered for significant
regions and rotated as in other approaches.

(@) (b)

(c) (d)

Figure 3.5: Phases of Line Detection. a) Original image, b) Color classified
image, c) Perceived lines e) Egocentric view

3.3 Line Perception

Line perception process is an important part of the vision module, since
it provides important information for the localization module. The sample
images from line perception process are shown in Fig. 3.5. The proposed
approach is as follows:

e Hough transform is applied on the white pixels which are close enough
to green pixels using Robert’s Cross on their Y band as the first oper-
ation.

e Two thresholds are used to check each entry in the table prepared in
Hough transform. The first threshold is the minimum acceptable value
for the line’s entry, whereas the second one is minimum acceptable
value for the sum of entries of the line and its neighbors. For a line
entry to be accepted, it should also be a local maximum.

e For a chosen line, to decrease the quantization error, the weighted
average of its angle and the perpendicular distance are taken, where
weights are the values in the Hough transform table.

e Now, we have a more or less fine tuned line, but it is still the border
of the field line. Especially in images where field lines are close to the
camera, the lines occupy a thick region. The selected line is shifted
along its normal vector orientation. The amount and the direction
of the shift are calculated by following the normal line at different
intervals.

e The lines are rotated according to the pan and the tilt of the camera.

e Then, the lines are mapped to the real 3D field using geometrical
transformations.

e Once the lines are mapped to the field, they are still relative to the
camera. As they need to be relative to the chest of the robot, they are
transformed accordingly.

e Finally, extra copies of the same line, which is a rare but possible
situation, are eliminated.

3.4 Object detection

The classified image is processed in order to obtain blobs. Here, we use the
new approach mentioned in Section 3.2.

3.4.1 Object rotation

Another novel approach used is the concept of a bounding octagon of a
region. Since the robot must turn its head in order to expand its field of
view, it is necessary to rotate the obtained image according to the actual
position of the head. However, since rotation is a very expensive operation,
it is not wise to rotate the entire image. For this reason typically only the
identified regions are rotated. Since octagons are more suitable for rotation
than rectangular boxes, using octagons instead of boxes to represent regions
reduces the information loss due to rotation.

3.4.2 Ball identification

Our vision module employs a very efficient partial circle fit algorithm for
detecting partially occluded balls and the balls which are on the borders of
the image as shown in Fig. 3.6. Since accuracy in the estimation of ball
distance and orientation is needed mostly in cases where the ball is very
close, and often the ball can only be seen partially in such cases, having a
cheap and accurate ball perception algorithm is a must. The equation for
estimating the ball radius is

(3.1)

where r is the radius, & is the height of the ball region and s is the width of
the ball region. Although this estimation can be used for different types of
ball segments (i.e ball segments in different parts of the captured image), the
ball center estimation requires separate handling of different partial image
conditions.

Color Fie : D\Okul Cerberus Developmentosior_yeri cct
o Ul Cerberus a2
mage Fie: g iFichres MAGEDR YUV
Pan :[0.007628 Ti[-1.088924

CameraX: 0 Y. z:m

Process mage

Color File: D/\0kul Cerberus!Developmenficalor_yeni.cct | =
i R -
Pan :[0,003645 Tik-[0. 7885427

CameraX: 0 Y81 Z:126

f

Figure 3.6: Two examples of detecting partial balls via circle fit

3.4.3 Sanity checks

The recognition of objects on the field is based on objects’ colors and sanity
checks performed on the candidate regions. The sanity check process has
three phases.

e Phase 1. The candidate region should satisfy object specific precon-
dition checks. For example, the lower edge of the goal or the lowest
point of the ball should not be outside of the field region. Of course
this control requires a field region (i.e. a merged green region classi-
fied as the field) and a threshold value which can be modified for each
object type.

e Phase 2. A probability value is assigned for the candidate field. The
probability calculation is based on the properties of the object. For

10

example, distance between regions, with respect to the region sizes, has
an important effect on probability of being a pair of beacon regions.

e Phase 3. Some postconditions checks are performed on the surviv-
ing candidate regions. The first postcondition check is usually the
probability thresholds which prun

The final checks for each object is well-documented in the source codes which
can be accessed from our team’s web page.

The vision module is one of the fastest vision systems having the features
described above developed on AIBOs. On our previous robots (ERS-210
with 200 MHz processor) a frame was processed in approximately 50 ms
which provides a 20 frames per second speed.

11

Chapter 4

Localization

Localization is one of the main research interests of our research group. We
have a number of different localization engines [4, 5, 6, 7, 8]. This year,
again we have used S-LOC, which was our main localization engine in 2005
[3]. In this section, S-LOC and history based egocentric world modeling
approach called My Environment are presented.

4.1 My Environment

My Environment was initially designed as a part of the localization module
and aimed to increase the performance of localization. It was then decided
to be a separate module such that not only the localization module, but the
other modules could also benefit from its output.

For a human to predict his/her pose, i.e. his/her coordinates and the
orientation, vision is the primary input. By estimating the distance and the
orientation with respect to known static objects, one can calculate his/her
pose. These estimates are valid for not only when they are seen, but also
for a period of time after they were perceived, with having the estimates’
confidence decreasing in time.

The buffering of objects in the environment can be done either with their
actual poses or their poses with respect to the observer. For buffering the
actual poses of objects in time, the coordinates of the objects with respect to
the environment are calculated using the current perceptions, and stored in
an array of data structures as shown in Figure 4.7.a. The odometry update
and the instantaneous pose calculations are very simple and could be done
at a low cost.

For buffering the relative poses of the objects, the perceived distances
and relative angles are directly stored in an array of data structures which
are used as buffers as shown in Figure 4.7.b. This way, the odometry update
and the instantaneous pose calculations are relatively more complex, and
since they require trigonometric functions, the cost is higher.

12

L~ Pl
> = A buffer . - o buffer
Ob]eCt. i window Obl?d ik window
X Coordinate Rel. Distance
Y Coordinate H™ Rel. Angle H~
\/_
]]
Object 2: Object 2:
X Coordinate Rel. Distance
Y Coordinate H~ Rel. Angle |~
/
Object N: Object N:
X Coordinate Rel. Distance
Y Coordinate Rel. Angle
(@) (b)

Figure 4.1: Buffering the poses of objects: (a) Buffering actual poses, and
(b) Buffering the relative poses

Although the cost of buffering relative poses of objects is greater than
the cost of buffering actual poses of objects in time, buffering relative poses
is more robust since it does not involve localization. Involving localization in
the calculation results in involving localization error in the output. For each
stored value on an object’s pose history, having instantaneous localization
error added to the perception error, the estimations on the current pose of
the object would suffer from more noise.

In addition, buffering the relative poses of the objects makes it mean-
ingful to buffer the poses of the static objects. This is very valuable for
localization in two ways. First, the processed static object poses would be
more robust and lead to more accurate agent pose estimations. Secondly,
this buffering will make it possible to process more static objects than that
are seen in any moment of time, as long as the buffered relative poses could
give a proper estimate for the current pose of the static object.

4.1.1 General Outline of ME

My Environment (ME) is a module between the perception module, or any
other module that handles the perception of the environment objects, and
the other modules that use the output of the perception module as shown
in Figure 4.8. In some exceptional cases, where the position and the relative
angle data are not sufficient, the perception data may be needed to be
used directly. For instance, in the robot soccer domain, the ball tracking
behavior for the head, where the coordinates of the perceived ball region
on the camera frame image may be used to calculate the next pan - tilt
parameters, uses the perception output directly.

Localization is one of the modules that requires the perception data.
During the perception update of the localization module, the perceived static
objects are used to estimate the current pose of the agent.

13

Localization
Perception
l Planning
i My . Other
nvironmen Modules

\ Locomotion

Figure 4.2: Interaction of ME with the other modules

The inputs of the perception module are the current internal state of
the agent and the latest camera frame image. Input from the camera is
very noisy most of the time and may cause false perceptions. Not only
the distance of an object could be perceived erroneously, but sometimes
an object itself could be recognized as another object. If the data from
the perception module are used as they are, these errors could result in
unwanted behavior in other modules.

By filtering the output of the perception module and using the past
perceptions of the objects at the same time, more stable and robust data
could be provided for the localization module as well as other modules. This
way the effect of false perceptions and recognitions would be decreased.

It should be kept in mind that for a mobile agent, using the past per-
ceptions can lead to problems if the motion of the agent is not reflected on
the past perceptions.

4.1.2 Architecture of ME

There are two kinds of objects in the ME architecture: static objects and
dynamic objects. Each object, either static or dynamic, has a buffer window
for storing the most recent perception data for that object, and an additional
buffer for the current estimation for that object. The data structure of ME
is shown in Figure 4.9.

Each static object entry has a distance, a relative angle and a confi-
dence regarding its perception. In the case when a static object has its own
orientation, the orientation values are also to be stored in the buffer. For
dynamic objects, the velocity should also be calculated, but as it is not di-
rectly extracted from a single camera frame, it is not necessarily be buffered.
In Figure 4.10a and 4.10b the data structures for static and dynamic objects
are defined.

The window size is a hyper-parameter of ME. The noise in odometry,
the dynamicity of the agent’s pose, and the frequency of the processed vi-

14

[—
= = ./b'uffer
Eeimete for Sanl | |
Object 1 Relative Poses | |-
\/
e
= = ./b'uffer
EU';fe”t cf)se Object 2: window
H)?Zcfz‘” Relative Poses| |
\,/-_

Current Pose
Estimate for
Object N

buffer

Object N: window

Relative Poses

Figure 4.3: The data structure of ME

buffer
window

Perception at t,_;:

*Relative Distance
*Relative Angle
*Confidence

buffer

Perception at t,_;: window

*Relative Distance
*Relative Angle
*Confidence

Current Pose Current Pose
*Relative Distance *Relative Distance
*Relative Angle *Relative Angle
*Confidence *Confidence
*IsSpeedKnown
*Speed
*Direction
(@) (b)

Figure 4.4: Data structures of (a) static objects, and (b) dynamic objects

15

sion frames play an important role in the selection of a good window size
parameter. For dynamic objects, the speed of such objects should also be
taken into account.

For instance, for Cerberus’05, the robots used have a maximum speed
of approximately 30 cm/s (with ERS 210s), the odometry is quite noisy as
the robots are legged, and the average vision frame processing performance
was 18 fps. For such conditions, the size of windows for static objects and
dynamic objects were chosen to be 32 and 12 respectively.

4.1.3 Procedures of ME

There are five main procedures of ME. Other than initialization, the first
two procedures, perception update and odometry update, are triggered as new
perception data from the perception module and new odometry data from
the locomotion module are obtained. The other two, current pose estimation
for static objects and the current pose estimation for dynamic objects, are
called inside the perception update procedure.

Initialization

As an initialization, it is necessary for the pose estimations to set all the
buffers in the windows of all the objects, for both the static objects and the
dynamic objects. If there is no prior information about the pose of an object
when the system has started, all the buffers in its window are to be marked
as unknown. If the initial pose of an object is known a priori, then this can
be provided to the system by filling the buffers in its windows according to
that knowledge.

Perception Update

For each dynamic and static object, the oldest record on the buffer is deleted
and a new record is stored from perception if the object is seen at the
moment, otherwise it is marked that there is information available about
the pose of the object at that time. After updating the buffer with the
latest perception output, an estimation is done for each object concerning
its pose by calling the appropriate procedure in Section 4.2.7 or Section
4.2.7.

Odometry Update

For the odometry update of each record, three trigonometric functions and
a square root is used. For a ME with n, number of objects and a window
size of n,,, there are n, X n,, number of records. These calculations increase
the cost of ME, but they are mandatory for reasonable ME estimations.

16

Since all the information in the buffers of all objects’ windows is relative
to the agent, on each movement action of the agent, they need to be modified.
For each record new relative distance and the relative angle values have to
be calculated using Equations 4.44 and 4.45.

¢ = cos(f) xd— Ax
s = sin(f) xd— Ay

d = Vc2+5s2

0 = tan"'(s/c)+ A6

~ = =
~— ~— ~— ~—

1
2
3
A4

~~ I~

where 0, d, Az, Ay and A6 are the previous relative angle, previous rela-
tive distance, the signed distance the agent moved in sideways, the signed
distance the agent moved on its orientation and the angle the agent has
turned, respectively. The new relative distance and the new relative angle
are represented with d’ and 6’ respectively.

Current Pose Estimation for Static Objects

For each static object, this function is called once in every perception update.
Using the window sized perception data records; a pose estimation is made
for its use in other modules of the agent’s architecture like localization and
planning.

In Equations 4.50, 4.51 and 4.52 the confidence estimation, the relative
distance and relative angle of the static object are calculated.

wj = > KAl x CAl X fus(i) (4.5)
=0
Ar; = S KA x DA x cos(AAT) X fus(i) (46)
wj
e K AT x DAL x sin(AAY) X fus(i
ij — ZZ—O 7 7 : (z) f () (47)
wj
nj = > KAl (4.8)
1=0
o KA) CAT X fos(i
o = L EAXCA IO g) (49)
Wy
dj = \/Azi+ Ay (4.10)
0; = tan '(Ay;/Azj) (4.11)

where j is the index of the object, n,, is the window size; w; is the total
weight for the j* object, fu,s(i) gives the weight of the i*" record for a

17

static object; fuc(n;) gives the weight for the confidence of an object with
n; known records in its windows; K Ag is a flag which is equal to one if the
ith record of the j* object exists (i.e. the object was perceived at the time
that record was buffered) and zero otherwise; DA is the distance of the "
record of the j** object; AA{ is the relative angle of the i** record of the j*
object; C'Ag is the confidence of the i*" record of the j* object; c; is the
confidence estimation of the j** object; d; is the relative distance estimation
of the j'" object; and 6; is the relative angle estimation of the j* object.

The function fy,s(7) is a monotonically increasing function. The value
of fuws(?) is to be arranged such a way that the more recent a record it is
the more weight it will receive, but at the same time it will not let too
small number of records (i.e. one or two) dominate the value of the weight.
Although a linear function could easily be used for that purpose, a sigmoid
function was expected to give better results if configured properly for the
application.

The function fy.(7) is also a monotonically increasing function for favor-
ing the confidence with respect to the number of records of which poses are
available.

If n; is zero, meaning that none of the buffers in the window stores a
perceived pose, then no estimation could be made and the object’s pose is set
as unavailable. After the confidence is calculated, if it is below a predefined
threshold, the object’s pose is also set as unavailable.

Current Pose Estimation for Dynamic Objects

The procedure of the current pose estimation for the dynamic objects is the
same as the current pose estimation for the static objects except that for
dynamic objects the speed and the direction of the speed should also be
calculated when possible. For each dynamic object, this function is called
once in every perception update. Using the same equations in Section 4.2.7
the pose estimation, with the exception of the speed related variables, is
performed, but the f,s(i) function is replaced with f,4(7), which gives the
weight of the it" record for the dynamic object.

If an object is dynamic, perceiving the object in different poses may be
either due to noisy perception or the object’s movement. If the object’s
recent poses are buffered and used for the estimation of the current pose,
the weights of the most recent records should be higher than they are for
static objects, which should always be perceived in the same pose. As a
remark, it should be noted that the effect of the movement of the agent is
eliminated with the motion update procedure.

The function f,q(7) is also a monotonically increasing function as the
function fys(7) is, but favors the most recent records more than fy,s(2). Since
the older records are less important for the dynamic objects, the window size
for the dynamic objects could be set smaller than the window size set for

18

the static objects.
The speed of a dynamic object is estimated only if the pose of the object
was available from the previous run, otherwise the speed is set as unavailable.
In Equations 4.54 and 4.55 the speed and relative direction of the speed
of the dynamic object are calculated.

hj = dj2 —+ d?—l — 2 X dj X dj,1 X COS(9j — 9]',1) (412)
hj — d? + d?
o~ Tl —cos Y TNy g . 4.1
@j cos (2><hj><dj_1) 0j—1—90; (4.13)
h.
ey VA; (4.14)

where j is the index of the object, d; is the relative distance estimation of
the j** object; 0; is the relative angle estimation of the 4t object; aj is the
relative direction of the speed estimation; and s; is the speed estimation.

4.1.4 Advantages and Disadvantages of ME

ME provides more stable results for both static and dynamic objects. For
static objects, especially in the case when localization does not give accurate
results, the pose of the static object at ME would be more robust. For
localization, the ME output poses can be used as if they were perceived from
the sensors at that time. In this way, perceived objects are not forgotten
just after they are perceived, but remain in ME for a specific period of time.
In addition, the noisy perception, which from time to time may lead to false
object detections, could be stabilized.

ME provides more stable results for dynamic objects as well. Using the
ME output instead of the perception output directly, instantaneous fluctu-
ations in the pose of the object are smoothened. Losing the dynamic object
in some camera frames and perceiving it again frequently, which is not a
rare thing in robot soccer, could lead to oscillations in the operations and
the outputs of some of the modules. ME smoothens these oscillation with
its pose estimation, where it uses the recent perceptions to calculate the
current pose.

These advantages have a cost. The space needed to store the pose buffers
and current estimations of objects in ME grows linearly with the product
of window size of the pose buffers and the number of objects in ME. The
complexity of the ME procedures is O(n,, X n,), where n,, is the window size
and n, is the number of objects in ME. Using the output of the perception
module, both the processing power and memory expenses of ME will be
saved, but if the system can afford these expenses, the benefits of ME could
be worthwhile.

It should also be noted that using ME, the agent would observe dynamic
objects slower than they are. This is because of using the previous poses of

19

the dynamic object in the calculation of the current pose. This problem
could be minimized theoretically by adding the velocity of the previous
estimation times the time passed to the previous records of that object,
but this could bring more noise than it makes corrections as the velocity
estimations could be noisier than the relative position estimations.

4.2 S-LOC: Simple Localization

During the development of the localization module of Cerberus’05, many
techniques were taken into consideration.

e Triangulation is a simple and accurate technique, but is not robust. It
is too much effected by noise, specially by the false perceptions [9)].

e The major disadvantage of Kalman Filter methods is that they do not
have the capability of recovering from kidnapping [12, 13].

e ML approaches are generally expensive, where false perceptions could
be big problems [14, 15].

e Raw MCL cannot recover from kidnapping, but a version of it, SRL is
implemented [16, 17, 18].

e ML-EKEF is also another expensive technique, which would not be pre-
ferred in a case where a much lower cost algorithm could give accurate
and robust results [19, 20].

e Fuzzy localization techniques generally have high computational com-
plexity, and do not give results with enough accuracy that are worth
the cost [10, 11].

e R-MCL is also another technique, which is used in the experiments for
comparison purposes [4, 5, 6].

Considering the points above, it was decided to implement S-Loc to-
gether with a version of SRL. The existing R-MCL module implemented in
our laboratory is also used in the experiments.

In general, the localization process has two main steps. The first one
is the perception update, which is based on the perceptions in order to
calculate the estimated pose of the agent. Since the movement of the agent
changes its pose, the second step, the odometry update, is necessary for
reflecting the effect of the movement on the calculations and the estimations.

Perception update, as it depends on the perceptional information, usu-
ally includes high amount of noise. Although the agent is dynamic, its pose
should not be highly unstable, i.e. the pose should not jump to different

20

L

Perception S-Loc o
c

o

m

| o
Other f

My Modules o
Environment A

___ e

Figure 4.5: The relationship of the S-Loc module with the other modules

poses that are far away on the field frequently. Using a memory for the pre-
vious pose estimate, and updating it with the current estimate could handle
the big fluctuations and increase the robustness to the false perceptions of
static landmarks.

In order to use triangulation, three objects, which are not available at
the same time frequently, are needed to be perceived. Also, even if three
objects are available, in the case where one of the perceptions is wrong or is
highly noisy, the calculation will lead to a very noisy pose estimation.

In the MCL, there is a large number of sample poses, for which many cal-
culations should be made in order to find their confidences. Generally, most
of these samples do not hold any useful information. Also, noisy perception
data may lead to unstable pose estimations.

The principle of ML leaves open how the robot’s belief is represented and
how the conditional probabilities are computed. Existing ML approaches
mainly differ in the representation of the state space and the computation
of the perceptual model. These approaches are generally expensive, since
the space is discretized and for each perception and for each location, the
probabilities should be calculated at each frame. False perceptions could
also be major problems.

In the perfect, noise-free case, the odometry data should be continuous
and the pose should be updated continuously as the agent moves. On the
other hand, in the real world case, the odometry data is generally very noisy,
especially when the agent uses legs for locomotion; and arrives at discrete
times, for instance after a step is completed. Both of these make the previous
pose estimates less confident for the current estimate calculations.

4.2.1 General Outline of S-Loc

S-Loc is a localization module. It needs the perception data and the odom-
etry data for updating the pose estimate, which it provides as the output.
This pose estimate is then used in other modules. The relationship of the
S-Loc module with the other modules is shown in Figure 4.11.

21

Landmark
Perceptions

Weights

A New Pose

Figure 4.6: The perception update process

The perceived data can be obtained directly from the vision module (or
any other perception module), or they can be supplied by the ME module
where they are buffered and estimates using them are produced. It could
perform better if the perceptional input is provided by the ME module,
because the ME module provides more stable and robust data.

The locomotion module provides the odometry data at certain times,
which is generally less frequent than the perception data. The effect of the
movement of the agent should also be reflected on the pose estimate.

4.2.2 Architecture of S-Loc

The perception update of the S-Loc depends on the perception of landmarks
and the previous pose estimate. The perception update process is shown in
Figure 4.12. Even if the initial pose estimate is provided wrong, it acts as a
kidnapping problem and is not a big problem as S-Loc will converge to the
actual pose in a short period of time if enough perception could be obtained
during this period.

For each perceived landmark, a sample pose is calculated according to
this perception and the previous pose estimate of the agent. The previous
pose estimate is also taken as a sample pose.

For each sample pose, using all the landmarks, the likelihood of this
sample pose is calculated. This is done by assuming that the agent’s actual
pose is the sample pose being processed and calculating the difference of
the perceived landmarks positions and their actual positions. Also, the
confidence of the perception is reflected on the likelihood.

After these likelihood calculations are done for each sample pose, these
likelihoods are used for calculating the weights of the corresponding sample
poses, and a new pose is calculated as the weighted average of these sample

22

poses.

The weighted average of these sample poses is then used together with
the previous pose estimate to calculate the current pose estimate. The
purpose of not using the weighted average of these sample poses is to directly
provide the system enough memory to prevent big jumps of the pose estimate
and make it m