
Cerberus’06 Team Report

H. Levent Akın

Çetin Meriçli

Barış Gökçe

Fuat Geleri

Nuri Taşdemir

Buluç Çelik

Artificial Intelligence Laboratory

Department of Computer Engineering

Boğaziçi University

34342 Bebek, İstanbul, Turkey

{akin, cetin.mericli, sozbilir, nuri.tasdemir, fuat.geleri}@boun.edu.tr

buluc celik@hotmail.com

January 25, 2007

Contents

Acknowledgements ii

1 Introduction 1

2 Software Architecture 2

2.1 Cerberus Station . 2
2.2 Cerberus Player . 3

2.2.1 Core Object . 3
2.2.2 Communication Object 4
2.2.3 Dock Object . 4

3 Vision Module 5

3.1 Color Classification . 5
3.2 Finding Regions . 6
3.3 Line Perception . 8
3.4 Object detection . 9

3.4.1 Object rotation . 9
3.4.2 Ball identification . 9
3.4.3 Sanity checks . 10

4 Localization 12

4.1 My Environment . 12
4.1.1 General Outline of ME 13
4.1.2 Architecture of ME . 14
4.1.3 Procedures of ME . 16
4.1.4 Advantages and Disadvantages of ME 19

4.2 S-LOC: Simple Localization 20
4.2.1 General Outline of S-Loc 21
4.2.2 Architecture of S-Loc 22
4.2.3 Procedures of S-Loc 23
4.2.4 Advantages and Disadvantages of S-Loc 27
4.2.5 General Outline of ME 28
4.2.6 Architecture of ME . 29
4.2.7 Procedures of ME . 31

i

4.2.8 Advantages and Disadvantages of ME 34
4.3 S-LOC: Simple Localization 35

4.3.1 General Outline of S-Loc 36
4.3.2 Architecture of S-Loc 37
4.3.3 Procedures of S-Loc 38
4.3.4 Advantages and Disadvantages of S-Loc 41

5 Planning 43

5.1 Multi-Layer Planning . 43
5.1.1 Top Planning Layer 44
5.1.2 Role Layer . 44
5.1.3 Action Layer . 46
5.1.4 Basic Skills . 47

5.2 Fuzzy Inference Engine . 47

6 Motion 50

6.1 Kinematic Model . 50
6.2 Walking Styles . 51
6.3 Omnidirectional Motion . 52

6.3.1 Representing the Locus 53
6.4 Object-oriented Design . 55
6.5 Parameter Optimization . 56

7 Results 66

7.1 Games . 66
7.2 Technical Challenges . 67

7.2.1 Open Challenge . 67
7.2.2 Passing Challenge . 67
7.2.3 New Goal Challenge 67

References 69

ii

Acknowledgements

We gratefully acknowledge the support of our work by the Boğaziçi Uni-
versity Research Fund through projects 01A101, 03A101D, and 05A102D,
State Planning Organization through Project 03K120250 and Boğaziçi Uni-
versity Student Fund.

iii

Chapter 1

Introduction

The “Cerberus” team made its debut in RoboCup 2001 competition. This
was the first international team participating in the league as a result of the
joint research effort of a group of students and their professors from Boğaziçi
University (BU), Istanbul, Turkey and Technical University Sofia, Plovdiv
branch (TUSP), Plovdiv, Bulgaria. The team competed also in Robocup
2002, Robocup 2003, Robocup 2005 and Robocup 2006. Currently Boğaziçi
University is maintaining the team. In 2005, despite the fact that it was
the only team competing with ERS-210s (not ERS210As), Cerberus won
the first place in the technical challenges. This year, we have carried out
our success with old ERS-210s to the more powerful ERS-7s by reaching
the quarter finals. We lost only three games to the eventual first, third and
fourth place teams.

The software architecture of Cerberus mostly remained the same with
the last year. All of our modules are platform and hardware independent
and our development framework allows us to transfer from or to the robot
any input, output or intermediate data of the modules. This infrastructure
enables us to have a considerable speed-up during development and testing.

The organization of the rest of the report is as follows. The software
architecture is described in Chapter 2. In Chapter 3, the algorithms behind
the vision module are explained. The main localization algorithm is given in
Chapter 4. The planning module is described in Chapter 5. The Locomotion
module and gait optimization methods used are given in Chapter 6. The
results concerning the Soccer and Technical Challenge Competitions of the
Four Legged League of Robocup 2006 are discussed in Chapter 7.

1

Chapter 2

Software Architecture

Software architecture of Cerberus mainly consists of two parts:

• Cerberus Station

• Cerberus Player

In the next subsections we describe these parts.

2.1 Cerberus Station

This is the off-line development platform where we develop and test our
algorithms and ideas. The whole system is developed using Microsoft .NET
technologies and contains a set of monitors which enable visualization of sev-
eral phases of image processing, localization, and locomotion information.
We have included recording and replay facilities. It is possible to record live
images, classified images, regions found, perceived objects and estimated
pose on the field in real time to a log file and replay it in different speeds
or frame by frame. This allows us to test our implementations without de-
ploying the code on the robot each time. Cerberus Station also contains a
locomotion test unit in which all parameters of the motion engine and spe-
cial actions can be specified and tested remotely. For debugging purposes,
a telnet client and an exception monitor log parser are also included in the
station. Since each sub-module of the robot code is hardware independent,
all modules can be tested and debugged in the station. This hardware and
platform independence provides great savings on development time when
combined with the advanced raw data logging and playback system. Cer-
berus Station communicates with the robots via TCP and uses a common
serializable message structure for information exchange.

2

Figure 2.1: Cerberus Software Architecture

2.2 Cerberus Player

Cerberus Player is the part of the project that runs on the robots. Most of
the classes in Cerberus Player are implemented in a platform independent
manner, which means we can cross-compile them in various operating sys-
tems like OPEN-R, Windows or Linux. Although, robot dependent parts
of the code are planned to run only on the robot, a simulation system for
simulating locomotion and sensing is under development. The software ar-
chitecture of Cerberus Player consists of four objects:

• Core Object

• Locomotion

• Communication

• Dock Object

In the following subsections we describe these objects.

2.2.1 Core Object

The main part of the player code is the Core Object. This object coordinates
communication and synchronization between all the other objects that are
connected to it. Core Object takes the camera image as its main input
and sends the corresponding actuator commands to the locomotion engine.
Core Object is the container and hardware interface of Vision, Localization
and Planner modules. This combination is chosen because of the execution
sequence of these modules. All of them are executed for each received camera

3

frame and there is an input-output dependency and execution sequence that
is from vision → localization → planner.

2.2.2 Communication Object

Communication Object is responsible for receiving game data from the game
controller and managing robot-robot communication. Both the game con-
troller and robot-robot communication infrastructure use UDP as the com-
munication protocol.

2.2.3 Dock Object

Dock Object is the object which manages the communication between a
robot and the Cerberus Station. It redirects the received messages to Core
Object and sends the debug messages to the station. Dock Object uses TCP
to send and receive serialized messages to and from Cerberus Station.

4

Chapter 3

Vision Module

The Vision module is responsible for information extraction from the re-
ceived camera frame. Image processing starts with receiving a camera frame
and ends with an egocentric world model consisting of a collection of visual
percepts as shown in Fig. 3.1.

Figure 3.1: Phases of image processing. a) Original image, b) Color classified
image, c) Found blobs, d) Perceived objects e) Egocentric view

3.1 Color Classification

Instead of using previously implemented color classification methods like
decision trees and nearest neighbor [1], we have implemented a Generalized

5

Regression Network (GRNN) [2] for color generalization [3]. After labeling
a set of images with the proper colors, a GRNN is trained with the labeled
data and after the training phase, the network is simulated for the input
space to generate a color look-up table for four bits (16 levels) of Y, six bits
(64 levels) of U, six bits of V and three bits (eight levels) of the radius. Eight
levels for the radius is sufficient, and eventhough it increases the memory
requirement of the lookup table from 64KB to 512KB,this is still reasonable.
This year, the addition of the radius improved the performance of the color
classification table dramatically, as the radial color distortion of the ERS-7
AIBOs is a serious problem for the rest of the vision module.

Having the radius as a paramter can be viewed as having eight separate
color classification tables, but providing the radius to the network as input
also allows the training of each one of the ring segments affect the others.

Figure 3.2: The color classification. (a) and (d) Origional Images, (b) and
(e) Radius levels, (c) and (e) Classified images

The resultant color lookup table is very robust to luminance changes and
allows our vision system to work without using any kind of extra lights other
than the standard ceiling fluorescents. Moreover, since no extra operation
is required at runtime, no performance losses arise due to radial distortion
correction. Fig. 3.2

3.2 Finding Regions

This sub-module is responsible for processing a labeled image and extracting
the potentially significant regions for the perception sub-modules. Here we
use a different approach. Instead of using run length encoding (RLE), we
use an optimized region growing algorithm that performs both connected
component finding and region building operations at the same time. This

6

algorithm works nearly two times faster than the well known RLE-Find
connected components-build regions approach.

The approach which uses RLE first runs RLE on the image, connects the
runs to find the connected components, filtering out potentially insignificant
components, and finally rotating the regions. Fig. 3.3 shows an RLE sample.

Figure 3.3: An RLE sample

Our approach, on the other hand, uses a region growing algorithm di-
rectly on the raw image. Starting from leftmost top pixel, each pixel is
processed in the following manner:

• If it was not labeled, it receives a new label

• It is compared with its consecutive pixel on the right. If they are of
the same color and the consecutive pixel is labeled with a different
label from the pixel which is being processed, then the labels of both
pixels are noted to be united. If they are of the same color and the
consecutive pixel has no label, then the consecutive pixel is labeled
with the same label with the pixel which is being processed.

• It is compared with its consecutive pixel at the bottom. If they are
of the same color, then the consecutive pixel is labeled with the same
label with the pixel which is being processed.

At this point, the sub-regions and notes indicating the subregions to be
combined are prepared in just one pass on the image. Next, the sub regions
are combined according to the prepared notes. Fig. 3.4 shows a sample with
the new approach.

Figure 3.4: A sample with the new approach

After obtaining the combined sub-regions, they are filtered for significant
regions and rotated as in other approaches.

7

Figure 3.5: Phases of Line Detection. a) Original image, b) Color classified
image, c) Perceived lines e) Egocentric view

3.3 Line Perception

Line perception process is an important part of the vision module, since
it provides important information for the localization module. The sample
images from line perception process are shown in Fig. 3.5. The proposed
approach is as follows:

• Hough transform is applied on the white pixels which are close enough
to green pixels using Robert’s Cross on their Y band as the first oper-
ation.

• Two thresholds are used to check each entry in the table prepared in
Hough transform. The first threshold is the minimum acceptable value
for the line’s entry, whereas the second one is minimum acceptable
value for the sum of entries of the line and its neighbors. For a line
entry to be accepted, it should also be a local maximum.

• For a chosen line, to decrease the quantization error, the weighted
average of its angle and the perpendicular distance are taken, where
weights are the values in the Hough transform table.

8

• Now, we have a more or less fine tuned line, but it is still the border
of the field line. Especially in images where field lines are close to the
camera, the lines occupy a thick region. The selected line is shifted
along its normal vector orientation. The amount and the direction
of the shift are calculated by following the normal line at different
intervals.

• The lines are rotated according to the pan and the tilt of the camera.

• Then, the lines are mapped to the real 3D field using geometrical
transformations.

• Once the lines are mapped to the field, they are still relative to the
camera. As they need to be relative to the chest of the robot, they are
transformed accordingly.

• Finally, extra copies of the same line, which is a rare but possible
situation, are eliminated.

3.4 Object detection

The classified image is processed in order to obtain blobs. Here, we use the
new approach mentioned in Section 3.2.

3.4.1 Object rotation

Another novel approach used is the concept of a bounding octagon of a
region. Since the robot must turn its head in order to expand its field of
view, it is necessary to rotate the obtained image according to the actual
position of the head. However, since rotation is a very expensive operation,
it is not wise to rotate the entire image. For this reason typically only the
identified regions are rotated. Since octagons are more suitable for rotation
than rectangular boxes, using octagons instead of boxes to represent regions
reduces the information loss due to rotation.

3.4.2 Ball identification

Our vision module employs a very efficient partial circle fit algorithm for
detecting partially occluded balls and the balls which are on the borders of
the image as shown in Fig. 3.6. Since accuracy in the estimation of ball
distance and orientation is needed mostly in cases where the ball is very
close, and often the ball can only be seen partially in such cases, having a
cheap and accurate ball perception algorithm is a must. The equation for
estimating the ball radius is

r =
h

2
+

s × s

8 × h
(3.1)

9

where r is the radius, h is the height of the ball region and s is the width of
the ball region. Although this estimation can be used for different types of
ball segments (i.e ball segments in different parts of the captured image), the
ball center estimation requires separate handling of different partial image
conditions.

Figure 3.6: Two examples of detecting partial balls via circle fit

3.4.3 Sanity checks

The recognition of objects on the field is based on objects’ colors and sanity
checks performed on the candidate regions. The sanity check process has
three phases.

• Phase 1. The candidate region should satisfy object specific precon-
dition checks. For example, the lower edge of the goal or the lowest
point of the ball should not be outside of the field region. Of course
this control requires a field region (i.e. a merged green region classi-
fied as the field) and a threshold value which can be modified for each
object type.

• Phase 2. A probability value is assigned for the candidate field. The
probability calculation is based on the properties of the object. For

10

example, distance between regions, with respect to the region sizes, has
an important effect on probability of being a pair of beacon regions.

• Phase 3. Some postconditions checks are performed on the surviv-
ing candidate regions. The first postcondition check is usually the
probability thresholds which prun

The final checks for each object is well-documented in the source codes which
can be accessed from our team’s web page.

The vision module is one of the fastest vision systems having the features
described above developed on AIBOs. On our previous robots (ERS-210
with 200 MHz processor) a frame was processed in approximately 50 ms
which provides a 20 frames per second speed.

11

Chapter 4

Localization

Localization is one of the main research interests of our research group. We
have a number of different localization engines [4, 5, 6, 7, 8]. This year,
again we have used S-LOC, which was our main localization engine in 2005
[3]. In this section, S-LOC and history based egocentric world modeling
approach called My Environment are presented.

4.1 My Environment

My Environment was initially designed as a part of the localization module
and aimed to increase the performance of localization. It was then decided
to be a separate module such that not only the localization module, but the
other modules could also benefit from its output.

For a human to predict his/her pose, i.e. his/her coordinates and the
orientation, vision is the primary input. By estimating the distance and the
orientation with respect to known static objects, one can calculate his/her
pose. These estimates are valid for not only when they are seen, but also
for a period of time after they were perceived, with having the estimates’
confidence decreasing in time.

The buffering of objects in the environment can be done either with their
actual poses or their poses with respect to the observer. For buffering the
actual poses of objects in time, the coordinates of the objects with respect to
the environment are calculated using the current perceptions, and stored in
an array of data structures as shown in Figure 4.7.a. The odometry update
and the instantaneous pose calculations are very simple and could be done
at a low cost.

For buffering the relative poses of the objects, the perceived distances
and relative angles are directly stored in an array of data structures which
are used as buffers as shown in Figure 4.7.b. This way, the odometry update
and the instantaneous pose calculations are relatively more complex, and
since they require trigonometric functions, the cost is higher.

12

Figure 4.1: Buffering the poses of objects: (a) Buffering actual poses, and
(b) Buffering the relative poses

Although the cost of buffering relative poses of objects is greater than
the cost of buffering actual poses of objects in time, buffering relative poses
is more robust since it does not involve localization. Involving localization in
the calculation results in involving localization error in the output. For each
stored value on an object’s pose history, having instantaneous localization
error added to the perception error, the estimations on the current pose of
the object would suffer from more noise.

In addition, buffering the relative poses of the objects makes it mean-
ingful to buffer the poses of the static objects. This is very valuable for
localization in two ways. First, the processed static object poses would be
more robust and lead to more accurate agent pose estimations. Secondly,
this buffering will make it possible to process more static objects than that
are seen in any moment of time, as long as the buffered relative poses could
give a proper estimate for the current pose of the static object.

4.1.1 General Outline of ME

My Environment (ME) is a module between the perception module, or any
other module that handles the perception of the environment objects, and
the other modules that use the output of the perception module as shown
in Figure 4.8. In some exceptional cases, where the position and the relative
angle data are not sufficient, the perception data may be needed to be
used directly. For instance, in the robot soccer domain, the ball tracking
behavior for the head, where the coordinates of the perceived ball region
on the camera frame image may be used to calculate the next pan - tilt
parameters, uses the perception output directly.

Localization is one of the modules that requires the perception data.
During the perception update of the localization module, the perceived static
objects are used to estimate the current pose of the agent.

13

Figure 4.2: Interaction of ME with the other modules

The inputs of the perception module are the current internal state of
the agent and the latest camera frame image. Input from the camera is
very noisy most of the time and may cause false perceptions. Not only
the distance of an object could be perceived erroneously, but sometimes
an object itself could be recognized as another object. If the data from
the perception module are used as they are, these errors could result in
unwanted behavior in other modules.

By filtering the output of the perception module and using the past
perceptions of the objects at the same time, more stable and robust data
could be provided for the localization module as well as other modules. This
way the effect of false perceptions and recognitions would be decreased.

It should be kept in mind that for a mobile agent, using the past per-
ceptions can lead to problems if the motion of the agent is not reflected on
the past perceptions.

4.1.2 Architecture of ME

There are two kinds of objects in the ME architecture: static objects and
dynamic objects. Each object, either static or dynamic, has a buffer window
for storing the most recent perception data for that object, and an additional
buffer for the current estimation for that object. The data structure of ME
is shown in Figure 4.9.

Each static object entry has a distance, a relative angle and a confi-
dence regarding its perception. In the case when a static object has its own
orientation, the orientation values are also to be stored in the buffer. For
dynamic objects, the velocity should also be calculated, but as it is not di-
rectly extracted from a single camera frame, it is not necessarily be buffered.
In Figure 4.10a and 4.10b the data structures for static and dynamic objects
are defined.

The window size is a hyper-parameter of ME. The noise in odometry,
the dynamicity of the agent’s pose, and the frequency of the processed vi-

14

Figure 4.3: The data structure of ME

Figure 4.4: Data structures of (a) static objects, and (b) dynamic objects

15

sion frames play an important role in the selection of a good window size
parameter. For dynamic objects, the speed of such objects should also be
taken into account.

For instance, for Cerberus’05, the robots used have a maximum speed
of approximately 30 cm/s (with ERS 210s), the odometry is quite noisy as
the robots are legged, and the average vision frame processing performance
was 18 fps. For such conditions, the size of windows for static objects and
dynamic objects were chosen to be 32 and 12 respectively.

4.1.3 Procedures of ME

There are five main procedures of ME. Other than initialization, the first
two procedures, perception update and odometry update, are triggered as new
perception data from the perception module and new odometry data from
the locomotion module are obtained. The other two, current pose estimation
for static objects and the current pose estimation for dynamic objects, are
called inside the perception update procedure.

Initialization

As an initialization, it is necessary for the pose estimations to set all the
buffers in the windows of all the objects, for both the static objects and the
dynamic objects. If there is no prior information about the pose of an object
when the system has started, all the buffers in its window are to be marked
as unknown. If the initial pose of an object is known a priori, then this can
be provided to the system by filling the buffers in its windows according to
that knowledge.

Perception Update

For each dynamic and static object, the oldest record on the buffer is deleted
and a new record is stored from perception if the object is seen at the
moment, otherwise it is marked that there is information available about
the pose of the object at that time. After updating the buffer with the
latest perception output, an estimation is done for each object concerning
its pose by calling the appropriate procedure in Section 4.2.7 or Section
4.2.7.

Odometry Update

For the odometry update of each record, three trigonometric functions and
a square root is used. For a ME with no number of objects and a window
size of nw, there are no ×nw number of records. These calculations increase
the cost of ME, but they are mandatory for reasonable ME estimations.

16

Since all the information in the buffers of all objects’ windows is relative
to the agent, on each movement action of the agent, they need to be modified.
For each record new relative distance and the relative angle values have to
be calculated using Equations 4.44 and 4.45.

c = cos(θ) × d − ∆x (4.1)

s = sin(θ) × d − ∆y (4.2)

d′ =
√

c2 + s2 (4.3)

θ′ = tan−1(s/c) + ∆θ (4.4)

where θ, d, ∆x, ∆y and ∆θ are the previous relative angle, previous rela-
tive distance, the signed distance the agent moved in sideways, the signed
distance the agent moved on its orientation and the angle the agent has
turned, respectively. The new relative distance and the new relative angle
are represented with d′ and θ′ respectively.

Current Pose Estimation for Static Objects

For each static object, this function is called once in every perception update.
Using the window sized perception data records; a pose estimation is made
for its use in other modules of the agent’s architecture like localization and
planning.

In Equations 4.50, 4.51 and 4.52 the confidence estimation, the relative
distance and relative angle of the static object are calculated.

wj =

nw
∑

i=0

KAj
i × CAj

i × fws(i) (4.5)

∆xj =

∑nw

i=0
KAj

i × DAj
i × cos(AAj

i) × fws(i)

wj

(4.6)

∆yj =

∑nw

i=0
KAj

i × DAj
i × sin(AAj

i) × fws(i)

wj

(4.7)

nj =

nw
∑

i=0

KAj
i (4.8)

cj =

∑nw

i=0
KAj

i × CAj
i × fws(i)

wj

× fwc(nj) (4.9)

dj =
√

∆x2

j + ∆y2

j (4.10)

θj = tan−1(∆yj/∆xj) (4.11)

where j is the index of the object, nw is the window size; wj is the total
weight for the jth object, fws(i) gives the weight of the ith record for a

17

static object; fwc(nj) gives the weight for the confidence of an object with

nj known records in its windows; KAj
i is a flag which is equal to one if the

ith record of the jth object exists (i.e. the object was perceived at the time
that record was buffered) and zero otherwise; DAj

i is the distance of the ith

record of the jth object; AAj
i is the relative angle of the ith record of the jth

object; CAj
i is the confidence of the ith record of the jth object; cj is the

confidence estimation of the jth object; dj is the relative distance estimation
of the jth object; and θj is the relative angle estimation of the jth object.

The function fws(i) is a monotonically increasing function. The value
of fws(i) is to be arranged such a way that the more recent a record it is
the more weight it will receive, but at the same time it will not let too
small number of records (i.e. one or two) dominate the value of the weight.
Although a linear function could easily be used for that purpose, a sigmoid
function was expected to give better results if configured properly for the
application.

The function fwc(i) is also a monotonically increasing function for favor-
ing the confidence with respect to the number of records of which poses are
available.

If nj is zero, meaning that none of the buffers in the window stores a
perceived pose, then no estimation could be made and the object’s pose is set
as unavailable. After the confidence is calculated, if it is below a predefined
threshold, the object’s pose is also set as unavailable.

Current Pose Estimation for Dynamic Objects

The procedure of the current pose estimation for the dynamic objects is the
same as the current pose estimation for the static objects except that for
dynamic objects the speed and the direction of the speed should also be
calculated when possible. For each dynamic object, this function is called
once in every perception update. Using the same equations in Section 4.2.7
the pose estimation, with the exception of the speed related variables, is
performed, but the fws(i) function is replaced with fwd(i), which gives the
weight of the ith record for the dynamic object.

If an object is dynamic, perceiving the object in different poses may be
either due to noisy perception or the object’s movement. If the object’s
recent poses are buffered and used for the estimation of the current pose,
the weights of the most recent records should be higher than they are for
static objects, which should always be perceived in the same pose. As a
remark, it should be noted that the effect of the movement of the agent is
eliminated with the motion update procedure.

The function fwd(i) is also a monotonically increasing function as the
function fws(i) is, but favors the most recent records more than fws(i). Since
the older records are less important for the dynamic objects, the window size
for the dynamic objects could be set smaller than the window size set for

18

the static objects.
The speed of a dynamic object is estimated only if the pose of the object

was available from the previous run, otherwise the speed is set as unavailable.
In Equations 4.54 and 4.55 the speed and relative direction of the speed

of the dynamic object are calculated.

hj = d2

j + d2

j−1 − 2 × dj × dj−1 × cos(θj − θj−1) (4.12)

αj = Π − cos−1(
hj − d2

j + d2

j−1

2 × hj × dj−1

) − θj−1 − θj (4.13)

sj =

√

hj

∆t
(4.14)

where j is the index of the object, dj is the relative distance estimation of
the jth object; θj is the relative angle estimation of the jth object; αj is the
relative direction of the speed estimation; and sj is the speed estimation.

4.1.4 Advantages and Disadvantages of ME

ME provides more stable results for both static and dynamic objects. For
static objects, especially in the case when localization does not give accurate
results, the pose of the static object at ME would be more robust. For
localization, the ME output poses can be used as if they were perceived from
the sensors at that time. In this way, perceived objects are not forgotten
just after they are perceived, but remain in ME for a specific period of time.
In addition, the noisy perception, which from time to time may lead to false
object detections, could be stabilized.

ME provides more stable results for dynamic objects as well. Using the
ME output instead of the perception output directly, instantaneous fluctu-
ations in the pose of the object are smoothened. Losing the dynamic object
in some camera frames and perceiving it again frequently, which is not a
rare thing in robot soccer, could lead to oscillations in the operations and
the outputs of some of the modules. ME smoothens these oscillation with
its pose estimation, where it uses the recent perceptions to calculate the
current pose.

These advantages have a cost. The space needed to store the pose buffers
and current estimations of objects in ME grows linearly with the product
of window size of the pose buffers and the number of objects in ME. The
complexity of the ME procedures is O(nw×no), where nw is the window size
and no is the number of objects in ME. Using the output of the perception
module, both the processing power and memory expenses of ME will be
saved, but if the system can afford these expenses, the benefits of ME could
be worthwhile.

It should also be noted that using ME, the agent would observe dynamic
objects slower than they are. This is because of using the previous poses of

19

the dynamic object in the calculation of the current pose. This problem
could be minimized theoretically by adding the velocity of the previous
estimation times the time passed to the previous records of that object,
but this could bring more noise than it makes corrections as the velocity
estimations could be noisier than the relative position estimations.

4.2 S-LOC: Simple Localization

During the development of the localization module of Cerberus’05, many
techniques were taken into consideration.

• Triangulation is a simple and accurate technique, but is not robust. It
is too much effected by noise, specially by the false perceptions [9].

• The major disadvantage of Kalman Filter methods is that they do not
have the capability of recovering from kidnapping [12, 13].

• ML approaches are generally expensive, where false perceptions could
be big problems [14, 15].

• Raw MCL cannot recover from kidnapping, but a version of it, SRL is
implemented [16, 17, 18].

• ML-EKF is also another expensive technique, which would not be pre-
ferred in a case where a much lower cost algorithm could give accurate
and robust results [19, 20].

• Fuzzy localization techniques generally have high computational com-
plexity, and do not give results with enough accuracy that are worth
the cost [10, 11].

• R-MCL is also another technique, which is used in the experiments for
comparison purposes [4, 5, 6].

Considering the points above, it was decided to implement S-Loc to-
gether with a version of SRL. The existing R-MCL module implemented in
our laboratory is also used in the experiments.

In general, the localization process has two main steps. The first one
is the perception update, which is based on the perceptions in order to
calculate the estimated pose of the agent. Since the movement of the agent
changes its pose, the second step, the odometry update, is necessary for
reflecting the effect of the movement on the calculations and the estimations.

Perception update, as it depends on the perceptional information, usu-
ally includes high amount of noise. Although the agent is dynamic, its pose
should not be highly unstable, i.e. the pose should not jump to different

20

Figure 4.5: The relationship of the S-Loc module with the other modules

poses that are far away on the field frequently. Using a memory for the pre-
vious pose estimate, and updating it with the current estimate could handle
the big fluctuations and increase the robustness to the false perceptions of
static landmarks.

In order to use triangulation, three objects, which are not available at
the same time frequently, are needed to be perceived. Also, even if three
objects are available, in the case where one of the perceptions is wrong or is
highly noisy, the calculation will lead to a very noisy pose estimation.

In the MCL, there is a large number of sample poses, for which many cal-
culations should be made in order to find their confidences. Generally, most
of these samples do not hold any useful information. Also, noisy perception
data may lead to unstable pose estimations.

The principle of ML leaves open how the robot’s belief is represented and
how the conditional probabilities are computed. Existing ML approaches
mainly differ in the representation of the state space and the computation
of the perceptual model. These approaches are generally expensive, since
the space is discretized and for each perception and for each location, the
probabilities should be calculated at each frame. False perceptions could
also be major problems.

In the perfect, noise-free case, the odometry data should be continuous
and the pose should be updated continuously as the agent moves. On the
other hand, in the real world case, the odometry data is generally very noisy,
especially when the agent uses legs for locomotion; and arrives at discrete
times, for instance after a step is completed. Both of these make the previous
pose estimates less confident for the current estimate calculations.

4.2.1 General Outline of S-Loc

S-Loc is a localization module. It needs the perception data and the odom-
etry data for updating the pose estimate, which it provides as the output.
This pose estimate is then used in other modules. The relationship of the
S-Loc module with the other modules is shown in Figure 4.11.

21

Figure 4.6: The perception update process

The perceived data can be obtained directly from the vision module (or
any other perception module), or they can be supplied by the ME module
where they are buffered and estimates using them are produced. It could
perform better if the perceptional input is provided by the ME module,
because the ME module provides more stable and robust data.

The locomotion module provides the odometry data at certain times,
which is generally less frequent than the perception data. The effect of the
movement of the agent should also be reflected on the pose estimate.

4.2.2 Architecture of S-Loc

The perception update of the S-Loc depends on the perception of landmarks
and the previous pose estimate. The perception update process is shown in
Figure 4.12. Even if the initial pose estimate is provided wrong, it acts as a
kidnapping problem and is not a big problem as S-Loc will converge to the
actual pose in a short period of time if enough perception could be obtained
during this period.

For each perceived landmark, a sample pose is calculated according to
this perception and the previous pose estimate of the agent. The previous
pose estimate is also taken as a sample pose.

For each sample pose, using all the landmarks, the likelihood of this
sample pose is calculated. This is done by assuming that the agent’s actual
pose is the sample pose being processed and calculating the difference of
the perceived landmarks positions and their actual positions. Also, the
confidence of the perception is reflected on the likelihood.

After these likelihood calculations are done for each sample pose, these
likelihoods are used for calculating the weights of the corresponding sample
poses, and a new pose is calculated as the weighted average of these sample

22

poses.
The weighted average of these sample poses is then used together with

the previous pose estimate to calculate the current pose estimate. The
purpose of not using the weighted average of these sample poses is to directly
provide the system enough memory to prevent big jumps of the pose estimate
and make it more stable.

After the current position of the agent is estimated, it could be safer
to calculate the current orientation of the agent using the current position
estimation and the perceptions.

In the case of having no perception at a certain time, the current pose
estimate could be obtained by decreasing the confidence of the previous pose
estimate.

The odometry update process is as simple as updating the pose estima-
tion with the odometry data. Since only the pose estimation is used from
the previous cycle of every estimation, no more update or calculation is nec-
essary. On the other hand, if the frequency of the odometry update is much
less than the frequency of the perception update, then it may be better to
lower the weight of the odometry data accordingly. This is because having
the original odometry data to be the result of the motion during more than
one perception updates.

4.2.3 Procedures of S-Loc

There are three main procedures of S-Loc. The initialization is the first one.
Other two procedures, perception update and odometry update, are triggered
as new perception data from the perception module and new odometry data
from the locomotion module arrive.

Initialization

The only thing to be done in the initialization procedure is to initialize the
pose estimate to initial value. It does not have to be the actual pose that
the agent will have at the beginning, since S-Loc module can recover from
kidnapping. On the other hand, it should still be set to a valid pose initially
in order not to cause a problem in the proceeding calculations.

Perception Update

As shown in Equations 4.56, 4.57, 4.58, 4.59 and 4.60, the first pose sample
is the previous pose estimate.

PSA0

x = PEx (4.15)

PSA0

y = PEy (4.16)

PSA0

θ = PEθ (4.17)

23

PSA0

c = PEc (4.18)

PSA0

w = PEc × fwpu2(PSA0

x, PSA0

y, PSA0

θ, PA) (4.19)

PA0

k = 1 (4.20)

where PS0
x, PS0

y , PS0

θ , PS0
c and PS0

w are the x-coordinate, y-coordinate,
orientation, confidence and weight of the first pose sample; PEx, PEy PEθ,
and PEc are the x-coordinate, y-coordinate, orientation and confidence of
the pose estimate before the perception update; PA, percepts array, is the
collection of perception data of all the perceived landmarks together with
their coordinates that are known initially; fwpu2 is the function that returns
a weight component for a pose according to the current perceptions; and
PA0

k is set to one in order to have the first element of pose sample array
included in the proceeding calculations.

Then, a separate pose sample is calculated for each perception as in the
Equations 4.63, 4.64, 4.66, 4.67 and 4.68.

αi = tan−1

(

PEy − PAi
y

PEx − PAi
x

)

(4.21)

PSAi
x = PAi

x + PAi
d × cos(αi) (4.22)

PSAi
y = PAi

y + PAi
d × sin(αi) (4.23)

βi = tan−1

(

PSAi
y − PAi

y

PSAi
x − PAi

x

)

(4.24)

PSAi
θ = π + βi − PAi

θ (4.25)

PSAi
c = PAi

c (4.26)

PSAi
w = fwpu1(PAi) × fwpu2(PSAi

x, PSAi
y, PSAi

θ, PA) (4.27)

where αi and βi are dummy angle variables; PSAi
x, PSAi

y, PSAi
θ, PSAi

c

and PSAi
w are the x-coordinate, y-coordinate, orientation, confidence and

weight of the ith pose sample; PAi
x, PAi

y are the actual x-coordinate and y-

coordinate of the ith landmark in the percepts array; PAi
d, PAi

θ and PAi
c are

the perceived relative distance, relative angle and the perception confidence
of the ith landmark in the percepts array; PAi is the perception data of the
ith perceived landmark which is stored as the ith element of the Perception
Array; and fwpu1 is the function that returns a weight component for a pose
according to the perception for which the pose sample is calculated.

The function fwpu1 returns the first component of the PSAi
w for the

argument PAi. It may return PAi
c directly or any other number that gives

the confidence that the perception is correct. Since the accuracy of the pose
sample will be taken into account by the function fwpu2, this function is
independent of the corresponding pose sample. The purpose of this function
is to decrease the weight of the pose samples, of which the perception is
less confident. In the case where the perception module does not provide

24

healthy confidence values, the perceived relative distance of the landmark
can be used for the calculation of the return value. In such a case, a properly
configured sigmoid function can be very suitable. If the landmarks are of
different types and are known to have different perception accuracy, then
this could also be reflected on the return value.

The function fwpu2 returns the second component of the PSAi
w. The

return value is related to the accuracy of the pose sample according to all
the perceived landmarks. For each perceived landmark, the position of the
perceived landmark is calculated by adding the perceived distance on the
perceived relative angle to the pose sample, and the resulting position is
compared to the actual position of the landmark. The difference gives the
error. The return value should be a function of the error as in Equation
4.71.

parj
x =

∣

∣

∣PAj
x − (PSAi

x + PAj
d × cos(PSAi

θ + PAj
θ))
∣

∣

∣ (4.28)

parj
y =

∣

∣

∣
PAj

y − (PSAi
y + PAj

y × sin(PSAi
θ + PAj

θ))
∣

∣

∣
(4.29)

fwpu2 =

NL
∏

j=1

PAj
k × fwpu3

(

parj
x, parj

y

)

(4.30)

where NL is the number of landmarks; PAj
k is one if the perception of

the jth landmark is available, and zero otherwise; and fwpu3 is a function
that returns a value related to the difference in the x-coordinate and the
y-coordinate.

The return value of the function fwpu3 is a value for the confidence of
the sample pose for the corresponding perceived landmark. The greater
the x-coordinate and y-coordinate differences provided as parameter to this
function, the worse the sample pose fits to that landmark perception and
therefore the less confidence the function shall return.

The calculation of the new pose estimate is the last step of the perception
update. Except the new orientation estimate, all the estimation values are
the weighted average of the recent calculation, which is in turn a weighted
average of sample poses, and the corresponding previous estimate value. The
new orientation estimate is calculated by using the new coordinate estimates
and the perceptions. The new values of pose estimate are calculated from
the Equations 4.74, 4.75, 4.78, and 4.79.

hp = fHP





NL
∑

j=1

PAj
k



 (4.31)

tw =

NL
∑

j=0

(

PAj
k × PSAj

w

)

(4.32)

25

PE∗

x = hp × PEy + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

x × PSAj
w

)

tw
(4.33)

PE∗

y = hp × PEy + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

y × PSAj
w

)

tw
(4.34)

βi = tan−1

(

PE∗

y − PAi
y

PE∗

x − PAi
x

)

(4.35)

wai = fwpu1(PAi) × fwpu2(PE∗

x, PE∗

y , βi, PA) (4.36)

PE∗

θ = tan−1

(

∑NL

i=1

(

PAi
k × sin(βi) × wai

)

∑NL

i=1

(

PAi
k × cos(βi) × wai

)

)

(4.37)

PE∗

c = hp × PEc + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

c × PSAj
w

)

tw
(4.38)

where PE∗

x, PE∗

y , PE∗

θ and PE∗

c are the updated x-coordinate, y-coordinate
and orientation of the pose estimate; and fHP is a function that returns a
history coefficient according to the number of percepts available.

Odometry Update

For the odometry update, the only necessary thing is to update the current
pose estimation with the new odometry data. No more update or calculation
is necessary, because nothing is used from the previous cycle of estimation
other than the pose estimation.

It should also be noted that, in the case where the frequency of the
odometry update is much less than the frequency of the perception update,
transforming the odometry data to lower values may lead to better results
since the original odometry data is the result of the agent’s motion from the
previous odometry update to the current one, and this would last for more
than one perception updates.

In Equations 4.80, 4.81 and 4.82 the new (updated) coordinates and
orientation of the pose estimate is calculated.

PE∗

x = PEx + ∆x × sin(PEθ) + ∆y × cos(PEθ) (4.39)

PE∗

y = PEy + ∆y × sin(PEθ) − ∆x × cos(PEθ) (4.40)

PE∗

θ = PEθ + ∆θ (4.41)

where PE∗

x, PE∗

y and PE∗

θ are the updated x-coordinate, y-coordinate and
orientation of the pose estimate; PEx, PEy and PEθ are the x-coordinate, y-
coordinate and orientation of the pose estimate before the odometry update;
∆x, ∆y and ∆θ are the odometry data giving the change in the x-coordinate,
y-coordinate and orientation.

26

4.2.4 Advantages and Disadvantages of S-Loc

In ML, for each landmark seen the probability distribution is modified ac-
cordingly, and as a result, the final probability distribution is expected to
give the agent’s real pose. Instead of a probability distribution, a pose,
which is most likely to be the actual pose according to the previous pose
estimate, is used in S-Loc. In this way, as it is the case in ML, the pose
estimate converges to the actual pose of the agent.

Considering only the most likely sample poses, S-Loc acts like a kind of
ML but with a local coverage. Although it has a local coverage, it responds
in a fast manner to the kidnapping problem, as the most likely sample poses
could be far away from the previous pose estimate. In addition, since only
a sample pose for each landmark is calculated, S-Loc has a much lower cost
than ML.

In comparison with triangulation, S-Loc does not calculate the best esti-
mate according to the perception of the moment, but makes the estimation
in a way that it converges to that point in a short period of time. On the
other hand, the effect of the false perceptions is greatly decreased as the sam-
ple pose of such a perception would have a relatively small confidence and
will not play a big role in the pose estimation. In this way, the robustness
is increased without decreasing the performance.

In a way, S-Loc works similarly as the MCL since the sample poses are
used in the same way they are used in MCL. The main difference is the
selection of these sample poses. In MCL, there is a large number of pose
samples, and they are populated according to their confidences, and ran-
domly mutated for small changes. In S-Loc new pose samples are calculated
for each estimation, and a pose sample is calculated for each perceived land-
mark. In this way, S-Loc becomes a much lower cost localization method
with accurate pose estimation capability.

The memory used in the S-Loc increases the robustness of the system
even further and the big jumps of the pose estimate are prevented.

The buffering of objects in the environment can be done either with their
actual poses or their poses with respect to the observer. For buffering the
actual poses of objects in time, the coordinates of the objects with respect to
the environment are calculated using the current perceptions, and stored in
an array of data structures as shown in Figure 4.7.a. The odometry update
and the instantaneous pose calculations are very simple and could be done
at a low cost.

For buffering the relative poses of the objects, the perceived distances
and relative angles are directly stored in an array of data structures which
are used as buffers as shown in Figure 4.7.b. This way, the odometry update
and the instantaneous pose calculations are relatively more complex, and
since they require trigonometric functions, the cost is higher.

Although the cost of buffering relative poses of objects is greater than

27

Figure 4.7: Buffering the poses of objects: (a) Buffering actual poses, and
(b) Buffering the relative poses

the cost of buffering actual poses of objects in time, buffering relative poses
is more robust since it does not involve localization. Involving localization in
the calculation results in involving localization error in the output. For each
stored value on an object’s pose history, having instantaneous localization
error added to the perception error, the estimations on the current pose of
the object would suffer from more noise.

In addition, buffering the relative poses of the objects makes it mean-
ingful to buffer the poses of the static objects. This is very valuable for
localization in two ways. First, the processed static object poses would be
more robust and lead to more accurate agent pose estimations. Secondly,
this buffering will make it possible to process more static objects than that
are seen in any moment of time, as long as the buffered relative poses could
give a proper estimate for the current pose of the static object.

4.2.5 General Outline of ME

My Environment (ME) is a module between the perception module, or any
other module that handles the perception of the environment objects, and
the other modules that use the output of the perception module as shown
in Figure 4.8. In some exceptional cases, where the position and the relative
angle data are not sufficient, the perception data may be needed to be
used directly. For instance, in the robot soccer domain, the ball tracking
behavior for the head, where the coordinates of the perceived ball region
on the camera frame image may be used to calculate the next pan - tilt
parameters, uses the perception output directly.

Localization is one of the modules that requires the perception data.
During the perception update of the localization module, the perceived static
objects are used to estimate the current pose of the agent.

The inputs of the perception module are the current internal state of

28

Figure 4.8: Interaction of ME with the other modules

the agent and the latest camera frame image. Input from the camera is
very noisy most of the time and may cause false perceptions. Not only
the distance of an object could be perceived erroneously, but sometimes
an object itself could be recognized as another object. If the data from
the perception module are used as they are, these errors could result in
unwanted behavior in other modules.

By filtering the output of the perception module and using the past
perceptions of the objects at the same time, more stable and robust data
could be provided for the localization module as well as other modules. This
way the effect of false perceptions and recognitions would be decreased.

It should be kept in mind that for a mobile agent, using the past per-
ceptions can lead to problems if the motion of the agent is not reflected on
the past perceptions.

4.2.6 Architecture of ME

There are two kinds of objects in the ME architecture: static objects and
dynamic objects. Each object, either static or dynamic, has a buffer window
for storing the most recent perception data for that object, and an additional
buffer for the current estimation for that object. The data structure of ME
is shown in Figure 4.9.

Each static object entry has a distance, a relative angle and a confi-
dence regarding its perception. In the case when a static object has its own
orientation, the orientation values are also to be stored in the buffer. For
dynamic objects, the velocity should also be calculated, but as it is not di-
rectly extracted from a single camera frame, it is not necessarily be buffered.
In Figure 4.10a and 4.10b the data structures for static and dynamic objects
are defined.

The window size is a hyper-parameter of ME. The noise in odometry,
the dynamicity of the agent’s pose, and the frequency of the processed vi-
sion frames play an important role in the selection of a good window size

29

Figure 4.9: The data structure of ME

Figure 4.10: Data structures of (a) static objects, and (b) dynamic objects

30

parameter. For dynamic objects, the speed of such objects should also be
taken into account.

For instance, for Cerberus’05, the robots used have a maximum speed
of approximately 30 cm/s (with ERS 210s), the odometry is quite noisy as
the robots are legged, and the average vision frame processing performance
was 18 fps. For such conditions, the size of windows for static objects and
dynamic objects were chosen to be 32 and 12 respectively.

4.2.7 Procedures of ME

There are five main procedures of ME. Other than initialization, the first
two procedures, perception update and odometry update, are triggered as new
perception data from the perception module and new odometry data from
the locomotion module are obtained. The other two, current pose estimation
for static objects and the current pose estimation for dynamic objects, are
called inside the perception update procedure.

Initialization

As an initialization, it is necessary for the pose estimations to set all the
buffers in the windows of all the objects, for both the static objects and the
dynamic objects. If there is no prior information about the pose of an object
when the system has started, all the buffers in its window are to be marked
as unknown. If the initial pose of an object is known a priori, then this can
be provided to the system by filling the buffers in its windows according to
that knowledge.

Perception Update

For each dynamic and static object, the oldest record on the buffer is deleted
and a new record is stored from perception if the object is seen at the
moment, otherwise it is marked that there is information available about
the pose of the object at that time. After updating the buffer with the
latest perception output, an estimation is done for each object concerning
its pose by calling the appropriate procedure in Section 4.2.7 or Section
4.2.7.

Odometry Update

For the odometry update of each record, three trigonometric functions and
a square root is used. For a ME with no number of objects and a window
size of nw, there are no ×nw number of records. These calculations increase
the cost of ME, but they are mandatory for reasonable ME estimations.

Since all the information in the buffers of all objects’ windows is relative
to the agent, on each movement action of the agent, they need to be modified.

31

For each record new relative distance and the relative angle values have to
be calculated using Equations 4.44 and 4.45.

c = cos(θ) × d − ∆x (4.42)

s = sin(θ) × d − ∆y (4.43)

d′ =
√

c2 + s2 (4.44)

θ′ = tan−1(s/c) + ∆θ (4.45)

where θ, d, ∆x, ∆y and ∆θ are the previous relative angle, previous rela-
tive distance, the signed distance the agent moved in sideways, the signed
distance the agent moved on its orientation and the angle the agent has
turned, respectively. The new relative distance and the new relative angle
are represented with d′ and θ′ respectively.

Current Pose Estimation for Static Objects

For each static object, this function is called once in every perception update.
Using the window sized perception data records; a pose estimation is made
for its use in other modules of the agent’s architecture like localization and
planning.

In Equations 4.50, 4.51 and 4.52 the confidence estimation, the relative
distance and relative angle of the static object are calculated.

wj =

nw
∑

i=0

KAj
i × CAj

i × fws(i) (4.46)

∆xj =

∑nw

i=0
KAj

i × DAj
i × cos(AAj

i) × fws(i)

wj

(4.47)

∆yj =

∑nw

i=0
KAj

i × DAj
i × sin(AAj

i) × fws(i)

wj

(4.48)

nj =

nw
∑

i=0

KAj
i (4.49)

cj =

∑nw

i=0
KAj

i × CAj
i × fws(i)

wj

× fwc(nj) (4.50)

dj =
√

∆x2

j + ∆y2

j (4.51)

θj = tan−1(∆yj/∆xj) (4.52)

where j is the index of the object, nw is the window size; wj is the total
weight for the jth object, fws(i) gives the weight of the ith record for a
static object; fwc(nj) gives the weight for the confidence of an object with

nj known records in its windows; KAj
i is a flag which is equal to one if the

32

ith record of the jth object exists (i.e. the object was perceived at the time
that record was buffered) and zero otherwise; DAj

i is the distance of the ith

record of the jth object; AAj
i is the relative angle of the ith record of the jth

object; CAj
i is the confidence of the ith record of the jth object; cj is the

confidence estimation of the jth object; dj is the relative distance estimation
of the jth object; and θj is the relative angle estimation of the jth object.

The function fws(i) is a monotonically increasing function. The value
of fws(i) is to be arranged such a way that the more recent a record it is
the more weight it will receive, but at the same time it will not let too
small number of records (i.e. one or two) dominate the value of the weight.
Although a linear function could easily be used for that purpose, a sigmoid
function was expected to give better results if configured properly for the
application.

The function fwc(i) is also a monotonically increasing function for favor-
ing the confidence with respect to the number of records of which poses are
available.

If nj is zero, meaning that none of the buffers in the window stores a
perceived pose, then no estimation could be made and the object’s pose is set
as unavailable. After the confidence is calculated, if it is below a predefined
threshold, the object’s pose is also set as unavailable.

Current Pose Estimation for Dynamic Objects

The procedure of the current pose estimation for the dynamic objects is the
same as the current pose estimation for the static objects except that for
dynamic objects the speed and the direction of the speed should also be
calculated when possible. For each dynamic object, this function is called
once in every perception update. Using the same equations in Section 4.2.7
the pose estimation, with the exception of the speed related variables, is
performed, but the fws(i) function is replaced with fwd(i), which gives the
weight of the ith record for the dynamic object.

If an object is dynamic, perceiving the object in different poses may be
either due to noisy perception or the object’s movement. If the object’s
recent poses are buffered and used for the estimation of the current pose,
the weights of the most recent records should be higher than they are for
static objects, which should always be perceived in the same pose. As a
remark, it should be noted that the effect of the movement of the agent is
eliminated with the motion update procedure.

The function fwd(i) is also a monotonically increasing function as the
function fws(i) is, but favors the most recent records more than fws(i). Since
the older records are less important for the dynamic objects, the window size
for the dynamic objects could be set smaller than the window size set for
the static objects.

33

The speed of a dynamic object is estimated only if the pose of the object
was available from the previous run, otherwise the speed is set as unavailable.

In Equations 4.54 and 4.55 the speed and relative direction of the speed
of the dynamic object are calculated.

hj = d2

j + d2

j−1 − 2 × dj × dj−1 × cos(θj − θj−1) (4.53)

αj = Π − cos−1(
hj − d2

j + d2

j−1

2 × hj × dj−1

) − θj−1 − θj (4.54)

sj =

√

hj

∆t
(4.55)

where j is the index of the object, dj is the relative distance estimation of
the jth object; θj is the relative angle estimation of the jth object; αj is the
relative direction of the speed estimation; and sj is the speed estimation.

4.2.8 Advantages and Disadvantages of ME

ME provides more stable results for both static and dynamic objects. For
static objects, especially in the case when localization does not give accurate
results, the pose of the static object at ME would be more robust. For
localization, the ME output poses can be used as if they were perceived from
the sensors at that time. In this way, perceived objects are not forgotten
just after they are perceived, but remain in ME for a specific period of time.
In addition, the noisy perception, which from time to time may lead to false
object detections, could be stabilized.

ME provides more stable results for dynamic objects as well. Using the
ME output instead of the perception output directly, instantaneous fluctu-
ations in the pose of the object are smoothened. Losing the dynamic object
in some camera frames and perceiving it again frequently, which is not a
rare thing in robot soccer, could lead to oscillations in the operations and
the outputs of some of the modules. ME smoothens these oscillation with
its pose estimation, where it uses the recent perceptions to calculate the
current pose.

These advantages have a cost. The space needed to store the pose buffers
and current estimations of objects in ME grows linearly with the product
of window size of the pose buffers and the number of objects in ME. The
complexity of the ME procedures is O(nw×no), where nw is the window size
and no is the number of objects in ME. Using the output of the perception
module, both the processing power and memory expenses of ME will be
saved, but if the system can afford these expenses, the benefits of ME could
be worthwhile.

It should also be noted that using ME, the agent would observe dynamic
objects slower than they are. This is because of using the previous poses of
the dynamic object in the calculation of the current pose. This problem

34

could be minimized theoretically by adding the velocity of the previous
estimation times the time passed to the previous records of that object,
but this could bring more noise than it makes corrections as the velocity
estimations could be noisier than the relative position estimations.

4.3 S-LOC: Simple Localization

During the development of the localization module of Cerberus’05, many
techniques were taken into consideration.

• Triangulation is a simple and accurate technique, but is not robust. It
is too much effected by noise, specially by the false perceptions [9].

• The major disadvantage of Kalman Filter methods is that they do not
have the capability of recovering from kidnapping [12, 13].

• ML approaches are generally expensive, where false perceptions could
be big problems [14, 15].

• Raw MCL cannot recover from kidnapping, but a version of it, SRL is
implemented [16, 17, 18].

• ML-EKF is also another expensive technique, which would not be pre-
ferred in a case where a much lower cost algorithm could give accurate
and robust results [19, 20].

• Fuzzy localization techniques generally have high computational com-
plexity, and do not give results with enough accuracy that are worth
the cost [10, 11].

• R-MCL is also another technique, which is used in the experiments for
comparison purposes [4, 5, 6].

Considering the points above, it was decided to implement S-Loc to-
gether with a version of SRL. The existing R-MCL module implemented in
our laboratory is also used in the experiments.

In general, the localization process has two main steps. The first one
is the perception update, which is based on the perceptions in order to
calculate the estimated pose of the agent. Since the movement of the agent
changes its pose, the second step, the odometry update, is necessary for
reflecting the effect of the movement on the calculations and the estimations.

Perception update, as it depends on the perceptional information, usu-
ally includes high amount of noise. Although the agent is dynamic, its pose
should not be highly unstable, i.e. the pose should not jump to different
poses that are far away on the field frequently. Using a memory for the pre-
vious pose estimate, and updating it with the current estimate could handle

35

Figure 4.11: The relationship of the S-Loc module with the other modules

the big fluctuations and increase the robustness to the false perceptions of
static landmarks.

In order to use triangulation, three objects, which are not available at
the same time frequently, are needed to be perceived. Also, even if three
objects are available, in the case where one of the perceptions is wrong or is
highly noisy, the calculation will lead to a very noisy pose estimation.

In the MCL, there is a large number of sample poses, for which many cal-
culations should be made in order to find their confidences. Generally, most
of these samples do not hold any useful information. Also, noisy perception
data may lead to unstable pose estimations.

The principle of ML leaves open how the robot’s belief is represented and
how the conditional probabilities are computed. Existing ML approaches
mainly differ in the representation of the state space and the computation
of the perceptual model. These approaches are generally expensive, since
the space is discretized and for each perception and for each location, the
probabilities should be calculated at each frame. False perceptions could
also be major problems.

In the perfect, noise-free case, the odometry data should be continuous
and the pose should be updated continuously as the agent moves. On the
other hand, in the real world case, the odometry data is generally very noisy,
especially when the agent uses legs for locomotion; and arrives at discrete
times, for instance after a step is completed. Both of these make the previous
pose estimates less confident for the current estimate calculations.

4.3.1 General Outline of S-Loc

S-Loc is a localization module. It needs the perception data and the odom-
etry data for updating the pose estimate, which it provides as the output.
This pose estimate is then used in other modules. The relationship of the
S-Loc module with the other modules is shown in Figure 4.11.

The perceived data can be obtained directly from the vision module (or
any other perception module), or they can be supplied by the ME module

36

Figure 4.12: The perception update process

where they are buffered and estimates using them are produced. It could
perform better if the perceptional input is provided by the ME module,
because the ME module provides more stable and robust data.

The locomotion module provides the odometry data at certain times,
which is generally less frequent than the perception data. The effect of the
movement of the agent should also be reflected on the pose estimate.

4.3.2 Architecture of S-Loc

The perception update of the S-Loc depends on the perception of landmarks
and the previous pose estimate. The perception update process is shown in
Figure 4.12. Even if the initial pose estimate is provided wrong, it acts as a
kidnapping problem and is not a big problem as S-Loc will converge to the
actual pose in a short period of time if enough perception could be obtained
during this period.

For each perceived landmark, a sample pose is calculated according to
this perception and the previous pose estimate of the agent. The previous
pose estimate is also taken as a sample pose.

For each sample pose, using all the landmarks, the likelihood of this
sample pose is calculated. This is done by assuming that the agent’s actual
pose is the sample pose being processed and calculating the difference of
the perceived landmarks positions and their actual positions. Also, the
confidence of the perception is reflected on the likelihood.

After these likelihood calculations are done for each sample pose, these
likelihoods are used for calculating the weights of the corresponding sample
poses, and a new pose is calculated as the weighted average of these sample
poses.

The weighted average of these sample poses is then used together with

37

the previous pose estimate to calculate the current pose estimate. The
purpose of not using the weighted average of these sample poses is to directly
provide the system enough memory to prevent big jumps of the pose estimate
and make it more stable.

After the current position of the agent is estimated, it could be safer
to calculate the current orientation of the agent using the current position
estimation and the perceptions.

In the case of having no perception at a certain time, the current pose
estimate could be obtained by decreasing the confidence of the previous pose
estimate.

The odometry update process is as simple as updating the pose estima-
tion with the odometry data. Since only the pose estimation is used from
the previous cycle of every estimation, no more update or calculation is nec-
essary. On the other hand, if the frequency of the odometry update is much
less than the frequency of the perception update, then it may be better to
lower the weight of the odometry data accordingly. This is because having
the original odometry data to be the result of the motion during more than
one perception updates.

4.3.3 Procedures of S-Loc

There are three main procedures of S-Loc. The initialization is the first one.
Other two procedures, perception update and odometry update, are triggered
as new perception data from the perception module and new odometry data
from the locomotion module arrive.

Initialization

The only thing to be done in the initialization procedure is to initialize the
pose estimate to initial value. It does not have to be the actual pose that
the agent will have at the beginning, since S-Loc module can recover from
kidnapping. On the other hand, it should still be set to a valid pose initially
in order not to cause a problem in the proceeding calculations.

Perception Update

As shown in Equations 4.56, 4.57, 4.58, 4.59 and 4.60, the first pose sample
is the previous pose estimate.

PSA0

x = PEx (4.56)

PSA0

y = PEy (4.57)

PSA0

θ = PEθ (4.58)

PSA0

c = PEc (4.59)

PSA0

w = PEc × fwpu2(PSA0

x, PSA0

y, PSA0

θ, PA) (4.60)

38

PA0

k = 1 (4.61)

where PS0
x, PS0

y , PS0

θ , PS0
c and PS0

w are the x-coordinate, y-coordinate,
orientation, confidence and weight of the first pose sample; PEx, PEy PEθ,
and PEc are the x-coordinate, y-coordinate, orientation and confidence of
the pose estimate before the perception update; PA, percepts array, is the
collection of perception data of all the perceived landmarks together with
their coordinates that are known initially; fwpu2 is the function that returns
a weight component for a pose according to the current perceptions; and
PA0

k is set to one in order to have the first element of pose sample array
included in the proceeding calculations.

Then, a separate pose sample is calculated for each perception as in the
Equations 4.63, 4.64, 4.66, 4.67 and 4.68.

αi = tan−1

(

PEy − PAi
y

PEx − PAi
x

)

(4.62)

PSAi
x = PAi

x + PAi
d × cos(αi) (4.63)

PSAi
y = PAi

y + PAi
d × sin(αi) (4.64)

βi = tan−1

(

PSAi
y − PAi

y

PSAi
x − PAi

x

)

(4.65)

PSAi
θ = π + βi − PAi

θ (4.66)

PSAi
c = PAi

c (4.67)

PSAi
w = fwpu1(PAi) × fwpu2(PSAi

x, PSAi
y, PSAi

θ, PA) (4.68)

where αi and βi are dummy angle variables; PSAi
x, PSAi

y, PSAi
θ, PSAi

c

and PSAi
w are the x-coordinate, y-coordinate, orientation, confidence and

weight of the ith pose sample; PAi
x, PAi

y are the actual x-coordinate and y-

coordinate of the ith landmark in the percepts array; PAi
d, PAi

θ and PAi
c are

the perceived relative distance, relative angle and the perception confidence
of the ith landmark in the percepts array; PAi is the perception data of the
ith perceived landmark which is stored as the ith element of the Perception
Array; and fwpu1 is the function that returns a weight component for a pose
according to the perception for which the pose sample is calculated.

The function fwpu1 returns the first component of the PSAi
w for the

argument PAi. It may return PAi
c directly or any other number that gives

the confidence that the perception is correct. Since the accuracy of the pose
sample will be taken into account by the function fwpu2, this function is
independent of the corresponding pose sample. The purpose of this function
is to decrease the weight of the pose samples, of which the perception is
less confident. In the case where the perception module does not provide
healthy confidence values, the perceived relative distance of the landmark
can be used for the calculation of the return value. In such a case, a properly

39

configured sigmoid function can be very suitable. If the landmarks are of
different types and are known to have different perception accuracy, then
this could also be reflected on the return value.

The function fwpu2 returns the second component of the PSAi
w. The

return value is related to the accuracy of the pose sample according to all
the perceived landmarks. For each perceived landmark, the position of the
perceived landmark is calculated by adding the perceived distance on the
perceived relative angle to the pose sample, and the resulting position is
compared to the actual position of the landmark. The difference gives the
error. The return value should be a function of the error as in Equation
4.71.

parj
x =

∣

∣

∣PAj
x − (PSAi

x + PAj
d × cos(PSAi

θ + PAj
θ))
∣

∣

∣ (4.69)

parj
y =

∣

∣

∣
PAj

y − (PSAi
y + PAj

y × sin(PSAi
θ + PAj

θ))
∣

∣

∣
(4.70)

fwpu2 =

NL
∏

j=1

PAj
k × fwpu3

(

parj
x, parj

y

)

(4.71)

where NL is the number of landmarks; PAj
k is one if the perception of

the jth landmark is available, and zero otherwise; and fwpu3 is a function
that returns a value related to the difference in the x-coordinate and the
y-coordinate.

The return value of the function fwpu3 is a value for the confidence of
the sample pose for the corresponding perceived landmark. The greater
the x-coordinate and y-coordinate differences provided as parameter to this
function, the worse the sample pose fits to that landmark perception and
therefore the less confidence the function shall return.

The calculation of the new pose estimate is the last step of the perception
update. Except the new orientation estimate, all the estimation values are
the weighted average of the recent calculation, which is in turn a weighted
average of sample poses, and the corresponding previous estimate value. The
new orientation estimate is calculated by using the new coordinate estimates
and the perceptions. The new values of pose estimate are calculated from
the Equations 4.74, 4.75, 4.78, and 4.79.

hp = fHP





NL
∑

j=1

PAj
k



 (4.72)

tw =

NL
∑

j=0

(

PAj
k × PSAj

w

)

(4.73)

PE∗

x = hp × PEy + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

x × PSAj
w

)

tw
(4.74)

40

PE∗

y = hp × PEy + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

y × PSAj
w

)

tw
(4.75)

βi = tan−1

(

PE∗

y − PAi
y

PE∗

x − PAi
x

)

(4.76)

wai = fwpu1(PAi) × fwpu2(PE∗

x, PE∗

y , βi, PA) (4.77)

PE∗

θ = tan−1

(

∑NL

i=1

(

PAi
k × sin(βi) × wai

)

∑NL

i=1

(

PAi
k × cos(βi) × wai

)

)

(4.78)

PE∗

c = hp × PEc + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

c × PSAj
w

)

tw
(4.79)

where PE∗

x, PE∗

y , PE∗

θ and PE∗

c are the updated x-coordinate, y-coordinate
and orientation of the pose estimate; and fHP is a function that returns a
history coefficient according to the number of percepts available.

Odometry Update

For the odometry update, the only necessary thing is to update the current
pose estimation with the new odometry data. No more update or calculation
is necessary, because nothing is used from the previous cycle of estimation
other than the pose estimation.

It should also be noted that, in the case where the frequency of the
odometry update is much less than the frequency of the perception update,
transforming the odometry data to lower values may lead to better results
since the original odometry data is the result of the agent’s motion from the
previous odometry update to the current one, and this would last for more
than one perception updates.

In Equations 4.80, 4.81 and 4.82 the new (updated) coordinates and
orientation of the pose estimate is calculated.

PE∗

x = PEx + ∆x × sin(PEθ) + ∆y × cos(PEθ) (4.80)

PE∗

y = PEy + ∆y × sin(PEθ) − ∆x × cos(PEθ) (4.81)

PE∗

θ = PEθ + ∆θ (4.82)

where PE∗

x, PE∗

y and PE∗

θ are the updated x-coordinate, y-coordinate and
orientation of the pose estimate; PEx, PEy and PEθ are the x-coordinate, y-
coordinate and orientation of the pose estimate before the odometry update;
∆x, ∆y and ∆θ are the odometry data giving the change in the x-coordinate,
y-coordinate and orientation.

4.3.4 Advantages and Disadvantages of S-Loc

In ML, for each landmark seen the probability distribution is modified ac-
cordingly, and as a result, the final probability distribution is expected to

41

give the agents real pose. Instead of a probability distribution, a pose, which
is most likely to be the actual pose according to the previous pose estimate,
is used in S-Loc. In this way, as it is the case in ML, the pose estimate
converges to the actual pose of the agent.

Considering only the most likely sample poses, S-Loc acts like a kind of
ML but with a local coverage. Although it has a local coverage, it responds
in a fast manner to the kidnapping problem, as the most likely sample poses
could be far away from the previous pose estimate. In addition, since only
a sample pose for each landmark is calculated, S-Loc has a much lower cost
than ML.

In comparison with triangulation, S-Loc does not calculate the best esti-
mate according to the perception of the moment, but makes the estimation
in a way that it converges to that point in a short period of time. On the
other hand, the effect of the false perceptions is greatly decreased as the sam-
ple pose of such a perception would have a relatively small confidence and
will not play a big role in the pose estimation. In this way, the robustness
is increased without decreasing the performance.

In a way, S-Loc works similarly as the MCL since the sample poses are
used in the same way they are used in MCL. The main difference is the
selection of these sample poses. In MCL, there is a large number of pose
samples, and they are populated according to their confidences, and ran-
domly mutated for small changes. In S-Loc new pose samples are calculated
for each estimation, and a pose sample is calculated for each perceived land-
mark. In this way, S-Loc becomes a much lower cost localization method
with accurate pose estimation capability.

The memory used in the S-Loc increases the robustness of the system
even further and the big jumps of the pose estimate are prevented.

42

Chapter 5

Planning

The soccer domain is a continuous environment, but robots operate in dis-
crete time steps. At each time step the environment, and the robots’ own
states change. The planner keeps track of those changes, and makes deci-
sions about the new actions. Therefore, first of all, the main aim of the
planner should be sufficiently modeling the environment and updating its
status. Second, the planner should provide control inputs according to this
model.

We wanted to come up with a unified planner model, that operates in
discrete time steps, but exhibits continuous behaviors, as shown in Fig. 5.1.
The unified model should be independent of roles and plans. For each time
step the planner will be queried, and it will control the robot according to the
current state. Control of the robot will on roles, since each role has different
primary aims, e.g., a goalie’s main aim is saving goal, but an attacker’s main
aim is making score.

Simple reflexive methods can not work in the continuous soccer environ-
ment. A planner should keep a memory about the status of the world, and
the robot. It should also reflect the changes to this model and according
to those changes it should adapt its actions, and take the next actions aim
biased.

Although planning is a quite difficult task it can be brokendown into
subtasks. Because of that we modeled a Multi-Layer Planning architecture
since by distributing requirements and jobs to different layers, and sub-
actions in these layers, the difficulty is distributed and decreased, too.

5.1 Multi-Layer Planning

For our planner we divided the plan into four layers, shown in Fig. 5.1.

43

Figure 5.1: Multi-layer Planner

5.1.1 Top Planning Layer

The first layer, at the top of the multi-layer structure is the Planner layer.
The planner is the only interface of the planning module to the outside.
All the communication with the plan is done with this layer. At each time
step, the Planner is used to take the next actions. Each robot in the field
has different aims. According to those aims they have different roles. The
planner keeps reference to some main modules, and a reference to one of
these roles, for each robot. Each role bases its decisions on its aim, and hence
shows different behaviors. However, Planner layer abstracts this variances,
and shows the same interface to the outside.

5.1.2 Role Layer

A role is typically represented as a finite state machine. The nodes in this
machine reflects the actions, and transitions are thepaths to the next ac-
tions according to the results of the previous ones. A role may or may not
use a finite state machine, and may be implemented in a different manner.
However, we designed a role to be seen unified from the Planner Layer side,
independent of using Action Layer or not.

As an example, seen in Fig. 5.2, a role is combination of actions according
to the aim. The figure shows an example Attacker Role. The aim of the

44

Figure 5.2: Example Role - Attacker Role

attacker is scoring goals. So the actions are combined to lead the robot
to make score. It first searches the ball, so an action for this is modeled.
Then it goes to the ball. If the ball is missed while going to it, the robot
again starts to search it. If the robot reaches the ball, it tries to grab the
ball. Then, with the grabbed ball, the robot tries to align with the goal. At
the end, if the alignment is successfuly accomplished in the time limits, the
attacker role leads robot to make a kick.

A role keeps track of the current action. Until the current action is
finished, it continues to process it. When the current action is finished,
according to the memory, the current action, and its result, next actions are
set to be the current action.

The planner Layer abstractes all the planning module from outside, and
Role Layer abstractes its content from the Planner Layer. When the Planner
Layer is requested for the next operation, it passes this to the current role,
and the current role passes this request to the current action. If the current
action finishes, another action is selected, and the request is passed to it. To

45

achieve this model, we used Chain of Responsibility Design Pattern [25]. So,
responsibility is passed between a chain of objects, from the top level layer
down to the simple basic operations. This enables both easily variations in
the implementations, and abstraction.

5.1.3 Action Layer

Each role contains nodes in their state machine. The nodes are implemented
in Action Layer, as Actions. An Action is a series of operations. It keeps
memory about the flow of these operations. For example, align to goal
action has simple operations like, turn, keep ball grabbed, check the goal.
Moreover, the action keeps a memory about the passed time. If the elapsed
time exceeds the ball hold time limit, the action should release the ball and
finish. If the robot successfuly aligns to the goal, it should finish in success
and according to the role should pass to another action. For example in the
attacker role, the current action should be changed to kick ball action.

As shown in Fig. 5.3, actions either continue or not. If it continues,
it takes the next operation according to memory. If it does not, it should
provide the cause of the halt. This cause will be the basis of the next
decisions.

Figure 5.3: Action Diagram

All the planning module depends on switching from one action to the
other. So we have a set of actions, and roles in hand. Creating all of them
at the start may seem costly. However, because we will continuously switch
from one action to the other, removing and reallocating them would lead to
greater time loss. So instead of removing the deselected action, and creating

46

another one according to the state diagram, we generated all possible actions
and roles beforehand, and stored them in the memory. For this purpose, we
used Factory Design Pattern [26]. If a role was alreadyg enerated then when
requested, the generated one is returned. If it was not generated, then when
requested, it is created, and the newly created object is returned. This
object is never removed again, but its status is reset for each call. Resetting
an action makes the action las if it were newly generated.

Actions are self contained, and abstracted from each other and from
roles that uses them. This separation and abstraction of actions gives us
the ability to write them separately. So we achieved working in parallel for
making a plan better. When an action is improved, it greatly affects the
general plan. According to aspect of the plan, actions are organized, so in
a way Aspect Oriented Programming model [27] is applied.

5.1.4 Basic Skills

The last and the most important layer is the Basic Skills layer. This layer
abstracts the robot from the plan. It may be thought as a robot driver.
The plan uses this driver to send commands to the robot. Independent
of the implementation of these commands at the robot side, a plan can
be designed. However, the success of the plan lies beneath the successful
application of these basic skills. For example, a plan may command the
robot to walk. Some robots will complete this command in less time as
walking quite quick, but some will be slow and take more time to complete.
The differences in the implementations of the basic skills will greatly affect
the success of the plans.

5.2 Fuzzy Inference Engine

In control typically crisp values result in oscillations in the decisions, but
fuzzy values make smoother transitions. Some actions in the planning mod-
ule may be thought as control problems, like following the ball with the head
of the robot and they were implemented as Fuzzy Inference Engines (FIS).

First, the fuzzy variables were defined. For ball following, as input, fuzzy
variables distance, orientation, and as output, fuzzy variables nod, pan and
tilt are used. Second, a fuzzy inference system is modeled in Matlab. In
this example we used Fuzzy Mamdani Controller, but Tukego Sugeno Fuzzy
Controller could also be used. Matlab also supports different fuzzy control
methods for the inference part [28]. The system is tested with sample inputs,
and 3D graphics are drawn for each input dimension sets. So instead of
finding an equation for ball following problem, it is modeled as a control
problem and solved with a fuzzy control structure. As a result, we achieved
a tested and ready to be run on the robot formula, shown in Fig. 5.4.
Matlab provides a C library for running the modeled inference system in

47

other applications. We extended this library, and converted it to C++
language.

Figure 5.4: Using Fuzzy Control for tracking a ball with the head of the
robot

As our layered planning structure infers, we made an action to follow the
ball with the head. This action loads the engine from a file. At each time
step the inputs, distance and orientation values, are given to the engine, and
outputs, nod, tilt and pan values, are estimated, and applied. The library
runs quite fast, and the system gives really robust results. One of the major
benefit of using a FIS in actions those solve control problems is that, without
changing any code, we may change the system with making changes on the
FIS definition file. So it would be really easy to adapt the system to the
new field conditions. If the ball is perceived smaller than before because
of the light conditions, then only by changing the set boundaries of fuzzy
variables will be quite enough. Moreover, because, the fuzzy values enable
smoother passes for output values, the system at the hand, that is trained
in the lab conditions, will also work for new conditions, with requiring some
small fine-tunings only.

We classified actions depending on whether they can be modeled as a

48

control problem or not. For example tracking the ball with the head is
classified as a simple control problem. Using fuzzy control for tracking the
ball with the head eliminated noises, and resulted in a more stable action.
Because of some erratic behaviors in some sub-modules, the conversion of
control problem oriented actions to fuzzy controlled actions could not be-
come stable before the tournament. Therefore, we decided to revoke all
actions those uses fuzzy logic, and instead of them we used the modified old
ones. Fuzzy Logic Control is really powerful in solving some big problems
easily, and we want to use this force in the next tournaments.

49

Chapter 6

Motion

In 2005, we had developed our own walking engine for ERS 210s [3]. Due
to the highly platform independent and modular structure of the modules
of our system, porting our motion engine to ERS-7s and making our robots
walk took only about half an hour. However, fine tuning the motion module
in order to achieve an effective walking speed and stability took almost an
entire semester.

At the lowest level, the Aibo’s gait is determined by a series of joint
positions for the three joints in each of its legs. More recently, trajectories
of the Aibo’s four feet through three-dimensional space have been used to
develop a higher level representation for Aibo’s gait. An inverse kinemat-
ics calculation is then used to convert these trajectories into joint angles.
Among higher-level approaches, most of the differences between gaits that
have been developed for the Aibo stem from the shape of the loci through
which the feet pass and the exact parameterizations of those loci.

6.1 Kinematic Model

At the position level, the problem is stated as, ”Given the desired position
of the robot’s paw, what must be the angles at all of the robots joints?”.

In our approach, inverse kinematics techniques are used to calculate the
desired joint angles while the paw is moving along the path determined by
the locus of the leg. The locus is divided into pStep (to be explained in
Section 6.5) points, and each of these points has (x,y,z) values. When the
paw is to move to the location of the next point on the locus, the following
formulas are used to calculate the necessary joint angles in order to make
the paw move toward this point. A simple representation of an Aibo leg is
illustrated in Figure 6.1.

The law of cosines is used for calculating the knee angle (θ3).

d2 = x2 + y2 + z2 (6.1)

50

Figure 6.1: Simple kinematic model representation for front right leg.

where (x, y, z) represents the 3d coordinates of the paw according to the
shoulder.

I1
2 + I2

2 − 2I1I2 cos(π − θ3) = d2 (6.2)

θ3 = π − arccos(
I1

2 + I2
2 − d2

2I1I2

) (6.3)

Then the abductor angle θ2 is calculated.

θ2 = arcsin(
x

I1 + I2 cos(θ3)
) (6.4)

Finally, rotator angle θ1 is calculated.

θ1 =
y cos(θ2)(I1 + I2 cos(θ3)) + zI2 sin(θ3)

yI2 sin(θ3) − (z cos(θ2)(I1 + I2 cos(θ3)))
(6.5)

6.2 Walking Styles

To produce a walking motion, the legs must not be at the same position
on the walk locus at the same time. Essentially, the legs must move out of
phase of each other. Human walking actually uses a similar approach. One
leg is lifted, moved forward, and then dropped, while the other stays where

51

it was. Once the first step has been taken, the other leg is then lifted and
basically mirrors the same action taken by the first leg.

Different gait types can be obtained by shifting the movement phases of
each leg in different manners. Timing of each leg and resulting walking type
is shown in Figure 6.2

Figure 6.2: Different timing of each legs motion results in different walking
styles [30].

6.3 Omnidirectional Motion

Omnidirectional walking can be thought as the motion of a shopping cart,
and can be obtained by treating the legs as wheels. This is illustrated in
Figure 6.3.

Figure 6.3: Using legs as the wheels of a shopping cart [29].

In order to achieve this motion, three walk components named for-
ward, sideways, and turn are used. These components are represented as
2-dimensional vectors and they are added vectorally in order to obtain one
resulting vector and its symmetric part according to the initial paw location.
These two resulting vectors together produces the limits of the locus; that
is the limits of each leg’s area of operation. The body of the robot can be
approximated as a rectangle from the top view and the angle of the turn

52

components can be calculated as the arctan(bodyWidth/bodyHeight). The
operation of obtaining locus limits by using forward, sideways, and turn
components is illustrated in Figure 6.4.

Figure 6.4: Forward, sideways, and turn components are added vectorally
to obtain a resulting vector; which indicates the direction and limit of the
paw movement [31].

Trot gait, in which the diagonally opposed legs are synchronized, is
used as the primary gait type. Omnidirectional motion is inherited from
ParaWalk as it is. The only difference is the meaning of sideways and turn
components. In ParaWalk, default sideways direction is leftwards, and de-
fault turn angle increases counterclockwise. In our approach, default side-
ways direction is rightwards, and default turn angle increases clockwise.
Resulting motions for different combinations of walk components is shown
in Figure 6.5.

6.3.1 Representing the Locus

According to the research done so far, rectangular, trapezoidal and half
elliptic loci are not effective; in fact they have a hindering effect on robot’s
movement. Especially the movement of rear legs is the cause of this effect.
While performing these kinds of movements the leg touches the ground in
the same direction of the movement, which in turn decreases the robot’s
momentum at that time.

Proposed locus is in the shape of an ellipse cut from below in some
proportion. This shape can be approximated by a hermite curve and it is
illustrated in Figure 6.7.

53

Figure 6.5: Resulting motions with different combinations of forward, side-
ways, and turnCW parameters: (a) only forward, (b) only sideways, (c) only
turnCW, (d) forward and turnCW together [30].

Figure 6.6: Movement of the paw on a (a) rectangular locus and a (b) half
elliptic locus.

Figure 6.7: Proposed locus in the shape of a hermite curve.

54

With the introduction of elliptic locus, this effect is avoided since the leg
touches the ground after moving in the reverse direction of the movement
for a short period of time. This movement type guarantees that the moment
of the robot is not hindered but increased. Also, elliptic locus makes the
movement of the leg smoother.

6.4 Object-oriented Design

Locomotion module is designed by using an object-oriented approach. First
of all, the robot is thought as a single object composed of many other objects.
Specifically, an AIBO robot physically consists of four legs, a head, and a
tail, each of which carries different number of joints. Each Leg has three
Joints, which are the rotator, the abductor, and the knee joints. The Head
has three Joints, which are pan, tilt, and roll joints. Finally, the Tail has
two Joints, which are pan and tilt joints. All these objects are defined as
a separate class. The classes used for the locomotion module is shown in
Figure 6.8.

Figure 6.8: Class diagram showing the relations between classes used in the
locomotion module.

Leg class has a method named moveTo for calculating the required joint
angles to be able to reach a specific point in a 3-dimensional space. It
performs the aforementioned inverse kinematics calculations and determines
the knee, abductor, and rotator angles of the leg, respectively.

55

Besides these robot related classes, there are two very important classes.
One is MotionManager class, which is responsible for the coordination of
all movements, and the other is GA class, which is responsible for generat-
ing an initial population according to the sample string provided, and then
performing the main GA operations (reproduction, crossover, mutation) on
each population in order to generate parameter lists to be used during ex-
periment processes.

6.5 Parameter Optimization

There are 11 parameters used by the new walking engine. These parameters
can be categorized as step duration related, locus related, and initial paw
locations related parameters.

1. Step duration related

pStep: Number of steps needed to complete one full step (i.e. the
paw comes back to its initial position).

2. Locus related

fLocH: Height radius of the ellipse to be used as the locus for front
legs.

fLocDH: Perpendicular distance of the center of the ellipse of the
front locus from the initial paw location.

bLocH: Height radius of the ellipse to be used as the locus for rear
legs.

bLocDH: Perpendicular distance of the center of the ellipse of the
rear locus from the initial paw location.

3. Initial paw locations related

hF: Height of the chest of the robot from ground.

hB: Height of the back of the robot from ground.

fs0: Sideway distance of the paws of the front legs from shoulder.

ff0: Forward distance of the paws of the front legs from shoulder.

bs0: Sideway distance of the paws of the rear legs from shoulder.

bf0: Forward distance of the paws of the rear legs from shoulder.

This year, evolution strategies (ES) [32], a kind of evolutionary algo-
rithm, is applied to optimize the walking parameters. This technique is
based on adaptation and evolution principles. The most important prop-
erty of this algorithm is that vectors which represent the genes can have real
values. So, ES can easily be applied our gait parameters, which have real
values.

56

Figure 6.9: Parameters related to initial paw locations [30].

There are two different types of ES algorithms. The first one generates
the next population by using only current offsprings, its notation is (µ/ρ
,µ)-ES and it is called as comma-selection while in the other type both the
offsprings and the parents are used for the generation of next population, its
notation is (µ/ρ + λ)-ES and it is called as plus-selection. In these notations,
µ represents the number of parents, ρ represents the number of individuals
used during cross-over and λ represents the number of offsprings.

ES uses randomness to find solution for the optimization problem. There
are four main functions which are used by ES optimization algorithm which
are ’reproduction’, ’recombination’, ’mutation’ and ’selection’. The most
important difference between other Evolutionary Algorithms and ES is that
mutation and recombination are applied to both parameters and their maxi-
mum mutation amounts. So, mutation amounts change and converge to the
their optimum values.

ES engine is implemented as a different workspace called ’ES’. As the
selection method, we have decided to use comma-selection, so only the par-
ents of the current population are used to generate the next population. In
our algorithm, stopping criterion is the generation number. The user de-
fines the maximum number of generations and when the number of current
generation is equal to that number, the simulation is terminated. The max-
imum and minimum values for both genes and sigma which determine the
maximum value of mutation for the corresponding gene are also determined
by the user. By this way, it is tried to reduce the size of the domain. During

57

the recombination process, there are some alternative methods, like getting
the average of the parents. In this project, discrete cross-over method is
applied. This method chooses one of the genes of corresponding parents,
which are chosen for cross-over operation, randomly and sets its gene as the
gene of the corresponding offspring.

Class diagram of the Engine is as follows:

Figure 6.10: Class Diagram of ES Engine.

58

Flow chart of the main code is as follows:

Figure 6.11: Flow Chart of Main.

59

Flow chart of the generation of the new population is as follows:

Figure 6.12: Flow Chart of Generation of New Population.

For the simulation process, a simple C++ source file with three static
and one main method which are required by the simulator, Webots [33], are
implemented. In Webots, three methods should be loaded for initialization,
run and destruction of the execution. In the main, ’robot live’, ’robot die’
and ’robot run’ functions are called to determine the names of correspond-
ing functions. For the initialization of the system, ’reset’ static method
is implemented. In this method, joint pointers are assigned, a pointer for
motion manager is generated to calculate joint angles, a pipe between super-
visor and robot is constructed and robot is placed at the beginning position
where is at the middle of the yellow goal. This function is called at the
beginning of the simulation. At each step of the simulation, ’run’ method
is called. In this method, initialization of the first generation is controlled
and if it is not, the first generation is constructed by supervisor according to
the data in initialization file and its first individual is sent to the robot via
the buffer. This initialization is done in ’run’ method, because the buffer
cannot be used in ’reset’. After this control, currently loaded parameter set
is run for a determined amount of time,’MOTIONTIME’. When the time is
up, the robot is set to the initial position by the supervisior. This process
is applied for ’NUMOFTRY’ runs. For each run, a fitness value is calcu-
lated by the supervisor and stored in an array. The supervisor calculates
overall the fitness value by getting the average of all fitness values without

60

the maximum and minimum values. This overall fitness value is set as the
fitness value of current parameter set. After all individuals are executed
by the robot and the overall fitness values are calculated by the supervisor,
the supervisor generates the next population according to these values and
resets the index of the current individual. Generation of the next population
is handled by the ’ES’ engine. During simulation, overall best individuals
are stored and currently calculated ones are appended to the ’output.txt’
file just before execution of next generation is started. For the destruction
of the system, ’die’ method is implemented. Because it is called only at the
end of the simulation, nothing is done in this function.

There were two options for the implementation of this training project.
The first approach was to embed the ’ES’ engine and let the robot make
the training itself, whereas the second approach was to make the training
under the control of the station which runs on a PC. Both approaches have
advantages and disadvantages. But, we have chosen second approach. The
first approach had the advantage of working standalone, but running ’ES’
is very time consuming. This calculation can be done on a PC much more
faster than on robot. So, ’ES’ is run on a PC and the robot is used only as
an actuator of the parameter set. At that point, it is assumed that a reliable
network exists between the robot and the corresponding PC. While fitness
value is calculated, following process is followed:

• Station sends the parameter set

• Robot gets the set

• It goes to one beacon and gets ready to go another beacon

• Robot starts to go that beacon and counts the number of steps left
during this process

• Robot reaches that beacon and sends counter to the station as the
inverse of fitness value.

To be able to make this training, we need only two tools in addition to
’ES’ engine: a player and a graphical user interface (GUI).

Player part of the project was the program which runs on the real robot.
In this program, the robot waits for the message of the station. After the
robot gets the station’s message which contains the new parameter set, robot
starts the timer and goes to the next beacon. When it reaches the bea-
con, it calculates the number of steps left and sends it as the inverse of
fitness value. At that point, the robot starts to be ready for the next in-
dividual. ’receiveDebugMessage’ function of CoreObject is the entry point
of the messaging mechanism between CerberusPlayer and CerberusStation.
’msgWALKTRAIN’ is the type of the message and if this message comes,
CoreObject switches the state of the robot to go to next beacon. When the

61

robot reaches to the beacon or time is out, Planner sets the flag of send-
ing fitness value. This flag activates ’sendFitnessValue’ function and this
function sends the fitness value of parameter set to the CerberusStation.

As the GUI, a frame is added to the CerberusStation. In this frame,
only the initialization file is determined by a textbox. In addition to this,
there are two buttons to start and stop training. There is no more need
of human control on training. For debugging purposes, a label is placed at
the bottom of the GUI. For current generation number and currently overall
best fitness, two additional textboxes are added to the frame. Apparence of
the GUI is as follows:

Figure 6.13: GUI of the Engine.

This frame adds itself to the image and data receivers of the ’robotCon-
nection’. Image receiver is not used in this training. When a message comes
from CerberusPlayer, it comes to the ’OnDataReceived’ method and the
correct message is found according to the header. Because new parameter
set is sent after the fitness value of previous set has arrived, ’ES’ engine is
embedded to this method. This embedded situation is very similar to that of
SimPlayer. The only difference is that the trial of the same parameter set is
handled by the robot. So, overall fitness value comes to the CerberusStation,
and CerberusStation calculates the next generation.

In initialization file, many parameters of the engine are defined. There
are two main aims to use initialization file. First one is the modularity.
Second aim is not to compile again and again, when one parameter of the
engine is changed. For example, when number of maximum generations
is changed or base genes are changed, there is no need to recompilation,
because these values are read from the file and not hard coded. Structure
of the initialization file is as follows:

• Number of parameters

62

• Number of all parents in one population

• Number of parents used for cross over

• Neighborhood which is used to find parents for cross over

• τi value

• τo value

• Number of overall best individuals stored

• Maximum generation number

• Base genes

• Maximum value of genes

• Minimum value of genes

• Minimum σ

• Maximum σ

Experiments of the ES engine are performed on two different environ-
ments namely the simulator, and the robot. During the experiment on the
simulator, the initial population is generated randomly and they are fully-
distributed to the domain of parameter set. So, the individuals start from
very distant points of the domain. Fitness criterion of the simulation is
the distance the robot moves with the corresponding parameter set. At the
beginning of the simulation, the fitness value of the overall best individual
is very low. But, there is a very rapid increase on the fitness value of the
overall best individual. After a point which is around 20, the increase on the
overall fitness value is not as much as before. After this generation, the best
fitness value converges to 2.0. Overall best fitness value exceeds the value
of 1.9 and it is less than 2.0 for the rest of the simulation. The value of
the fitness is given the forward distance between starting point and reached
point of the robot along the x coordinate. The results of the simulation are
as follows:

The second experiment is performed on the robot. In this experiment,
the initial population is not fully distributed, but base individual, which
is given in the input file, oriented. Lack of time, resources and danger of
breaking legs are the reasons to generate initial population around the base
individual. The fitness criterion of this experiment is the time of movement
of the robot between two beacons defined as 1000 / number of steps of plan-
ner during movement. The reason to multiply with 1000 is to get bigger
values which can be used easily to compare fitness values of two individu-
als. As a result of the experiment, a very slight improvement has occurred.

63

Figure 6.14: Results of Simulation on Webots.

Generation of initial population around base individual is the main reason
to get such a slight improvement. In addition to close initial population to a
point, an important problem of this experiment can be seen as the reason to
have such a situation. This problem is the loss of connection between robot
and station. When the robot loses the connection with station, it starts to
wait parameter set, and sends the fitness value to get new parameter set
again. At that point, two parameter sets may be received. So, one of the
parameter sets have fitness value without try. So, some successful parameter
sets may be lost because of this problem. Two solutions can be applied to
solve this problem. The first solution is to run ES on the robot, so there
would be no need of connection between the robot and the station. Second
possible solution is to send timestamps. But this structure makes the prob-
lem more complicated and more data are exchanged between the robot and
the station. So, this makes the system slower. A rapid increase at the end
the experiment may give the attitude of a better increase for the future, but
more experiments with more generation should be collected to have such a
conclusion. Results of the run on the robot is as follows:

Results of these two experiments are very different. There are two im-
portant differences between these two experiments. First of all, the robot
moves only forward with maximum value on the simulator. So, the given
fitness value does not guarantee the success of the turn and strafe speeds. In
the second experiment, speed is calculated by considering the functions used
to approach an object. So, the fitness value guarantees not only the success

64

Figure 6.15: Results of Run on the robot.

of the parameter set but also the success of parameter set with the func-
tions used to approach the object. Under this condition, the fitness value
of the second experiment is more realistic than that of the first one. The
second important difference is the applicability of the experiments. The first
experiment can be applied to the whole range of the parameter set. But,
the second experiment can be used only to adjust a reasonable parameter
set. So, it can be concluded that the first experiment is more suitable to
approach global optimum of the problem whereas the second experiment is
to approach local optimum.

65

Chapter 7

Results

This year, we have achieved our best results in the soccer competition part
by reaching to the quarterfinals. However, we could not repeat our success
in the Technical Challenge competition due to some technical difficulties and
failed to get an upper position in the ranking list.

7.1 Games

In the first round robin pool, our opponents were MS Hellhounds and Araibo.
In the first game, we played against Araibo. We had serious vision prob-
lems making us to play without localization and some motion problems in
turning with ball (which remained until the end of our games and later was
discovered and fixed) but we undoubtedly had a speed advantage over them,
so in most of the time we had the ball possession. However, we were unable
to score a goal so the game ended with a score 0-0. The second game was
against MS Hellhounds. In the first half, we showed a very good perfor-
mance and were able to score a goal so the first half finished with a score
2-1. In the second half, again we stuck to the turning problem which gave
the opponent forward players many chances to shoot against our goal and
our goalkeeper suffered severely from localization problems. They scored
four more goals and the game finished with score 6-1 in favor of MS Hell-
hounds. Fortunately, Araibo lost to MS Hellhounds 7-0 so we proceeded to
the intermediate round.

Our opponent was The Impossibles in the intermediate round. They were
a new yet good prepared team but we had a great speed and maneuverability
dominance over them so the whole game was played with our possession over
ball. We won 5-3 and we have scored some goals on our own goal due to the
same turning problem.

In the second round robin pool, our opponents were NUBots, Hamburg
Dog Bots and S.P.Q.R. In the first game, we played against S.P.Q.R. and
were able to win the game with a score 2-1. In the second game, we played

66

against Hamburg Dog Bots and we won 4-1 in an easy game and we have
guaranteed the quarter finals for the first time in our history. In our last
game, NUBots beat us easily 10-0.

In the quarter finals, we played against the last two year’s champion,
German Team. Despite the final score which is 9-0 in favor of them, we
played fairly good against them but our problem with turning with the ball
and localization problems that our goalkeeper has encountered led them to
such a victory.

We have lost only three games in the soccer competition and those three
teams were the eventual 1st, 2nd and 4th place teams. We were one of the
two teams who managed to score against MS Hellhounds and the other team
was NUBots, which won the competition.

7.2 Technical Challenges

This year, we could not repeated our success in 2005 due to some technical
problems we have faced.

7.2.1 Open Challenge

Our open challenge topic was a speech recognition module embedded to
an Aibo which enables people to give certain commands like ’sit’, ’stand
up’, ’walk’, ’roll’, and so on as they would give to a living pet dog. The
major strongness of our system was its speaker independence. However, we
wrongly underestimated the base noise level in the competition site so we
could not make the dog distinguish a given command from the background
noise and hence, we failed to present our system.

7.2.2 Passing Challenge

The passing challenge was one of our best prepared challenges. Two students
spent nearly an entire semester for developing the necessary communication
infrastructure and an efficient strategy for coordinating the three robots.
The challenge code needed some last minute touches and bugfixes when we
departed for the RoboCup. However, we made it to the quarterfinals so
we didn’t have enough time to fix the bugs and we have failed to make any
successful passes during the challenge. Hence we have finished this challenge
without any points.

7.2.3 New Goal Challenge

For new goal challenge, we worked on two modules. As the first module,
we have updated perceptor of the goal. Because the middle of the goal is
empty, most of the belief of the goal is determined by the ratio of number

67

of pixels inside of the region to the area of the it. The area of the candidate
region gives us the rest of our belief for the corresponding region to be the
region of the goal. As second module, planner has been updated. Flow chart
of the new goal challenger is very similar to that of primary attacker. The
only difference is the object to search when the grab process is successful.

We have misunderstood a rule of the challenge. We have assumed that
the static robots looks forward. But, we have seen that it was not a rule.
During the challenge, the robots were placed in different orientations, so
they reduced the area to be able to shot. We had a very close shot to the
goal. From here, we can conclude that perception has been successful for
the game, but the planner was not, and our score for this challenge is zero.

68

Bibliography

[1] Yıldız, O. T, L. Akarun and H. L. Akın, “Fast nearest neighbour
testing algorithm for small feature sizes”, Electronics Letters,Vol 40,
No 3, pp. 171-172, February 2004.

[2] Schioler, H. and U. Hartmann, “Mapping Neural Network Derived
from the Parzen Window Estimator”, Neural Networks, 5, pp. 903-
909, 1992.

[3] Akın, H. L.,Ç. Meriçli, T. Meriçli, K. Kaplan, and B. Çelik, Cerberus
2005 Team Report, 2005

[4] Kose, H and H. L. Akın, “Experimental Analysis And Comparison Of
Reverse-Monte Carlo Self-Localization Method”, CLAWAR/EURON
Workshop on Robots in Entertainment, Leisure and Hobby, Decem-
ber 2 – 4, 2004, Vienna, Austria, pp, 85-90.

[5] Kose, H and H. L. Akın, “Robots From Nowhere,” RoboCup 2004:
Robot Soccer World Cup VIII, LNCS 3276, pp.594-601, 2005.

[6] Kose, H and H. L. Akın,“A fuzzy touch to R-MCL localization al-
gorithm”, RoboCup 2005: Robot Soccer World Cup IX, LNCS Vol.
4020, pp. 420 - 427, 2006.

[7] Kaplan, K., B. Çelik, T. Meriçli, Ç. Mericli and H. L. Akın, “Practical
Extensions to Vision-Based Monte Carlo Localization Methods for
Robot Soccer Domain”, RoboCup 2005: Robot Soccer World Cup IX,
LNCS Vol. 4020, pp. 420 - 427, 2006.

[8] Kose, H., , B. Çelik and H. L. Akın, “Comparison of Localization
Methods for a Robot Soccer Team”, International Journal of Ad-
vanced Robotic Systems, Vol. 3, No. 4, pp.295-302, 2006.

[9] Hightower, J., and G. Borriello, “A Survey and Taxonomy of Loca-
tion Systems for Ubiquitous Computing”, Technical Report UW-CSE
Tech Report No:01-08-03, 2001.

69

[10] Buschka, P., A. Saffiotti, and Z. Wasik, “Fuzzy Landmark-Based
Localization for a Legged Robot” Proc. of the IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS) Takamatsu, Japan, July
2000, pp. 1205-1210, 2000.

[11] Saffiotti, A., A. Bjorklund, S. Johansson, and Z. Wasik, “Team Swe-
den”, RoboCup 2001: Robot Soccer World Cup V, Springer-Verlag,
Seattle, Washington, Lecture Notes in Computer Science Series, Vol.
2377, pp 725-729, 2002. 2001.

[12] Stroupe, A.W., and T. Balch, “Collaborative Probabilistic Constraint
Based Landmark Localization”, Proceedings of the 2002 IEEE/RSJ
Intl. Conference on Intel- ligent Robots and Systems EPFL, Lau-
sanne, Switzerland, pp. 447-452, 2002.

[13] Stroupe, A.W., K. Sikorski, and T. Balch, “Constraint-Based Land-
mark Localization”, RoboCup 2002: Robot Soccer World Cup VI,
Springer-Verlag, Fukuoka, Busan, Lecture Notes in Computer Sci-
ence Series, Vol. 2752, pp 8-24, 2003. 2001.

[14] Fox, D., W. Burgard, and S. Thrun, “Markov Localization for Mobile
Robots in Dynamic Environments”, Journal of Artificial Intelligence
Research, Vol. 11, pp. 391-427, 1999.

[15] Schulz, D., and W. Burgard, “Probabilistic State Estimation of Dy-
namic Objects with a Moving Mobile Robot”, Robotics and Au-
tonomous Systems 34, Elsevier, pp. 107-115, 2001.

[16] Thrun, S., D. Fox, W. Burgard, and F. Dellaert, “Robust Monte
Carlo Localization for Mobile Robots”, Artificial Intelligence, Else-
vier, Vol. 128, pp. 99-141, 2001.

[17] Schulz, D., and W. Burgard, “Probabilistic State Estimation of Dy-
namic Objects with a Moving Mobile Robot”, Robotics and Au-
tonomous Systems, Elsevier, Vol. 34, pp. 107-115, 2001.

[18] Lenser, S., and M. Veloso, “Sensor Resetting Localization for Poorly
Modelled Mobile Robots”, Proc. ICRA 2000, IEEE, Vol. 2, pp. 1225-
1232, 2000.

[19] Gutmann, J.S., and D. Fox, “An Experimental Comparison of Lo-
calization Methods Continued”, In Proc. of the 2002 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS02), Lausanne,
Switzerland, pp 454-459, 2002.

[20] Gutmann, J. S., “Markov-Kalman Localization for Mobile Robots”,
Int. Conf. on Pattern Recognition (ICRP), Vol. 2, No. 2, pp. 601-604,
2002.

70

[21] Kaplan, K. and H. L. Akın, “A Controller Design for Soccer Robot
Teams”, IJCI Proceedings of International XII Turkish Symposium
on Artificial Intelligence and Neural Networks TAINN 2003, 1, 1,
July 2003.

[22] Kose, H., Ç. Meriçli, K. Kaplan and H. L. Akın, “All Bids for One
and One Does for All: Market-Driven Multi-Agent Collaboration in
Robot Soccer Domain”, Computer and Information Sciences-ISCIS
2003, 18th International Symposium Proceedings, LNCS 2869, pp.
529-536, 2003.

[23] Kose, H., K. Kaplan, C. Mericli and H. L. Akın, “Genetic Algorithms
Based Market-Driven Multi-Agent Collaboration in the Robot-Soccer
Domain”, FIRA Robot World Congress 2003, October 1 - 3, 2003,
Vienna, Austria.

[24] Kose, H, U. Tatlidede, C. Mericli, K. Kaplan and H. L. Akın, “Q-
Learning based Market-Driven Multi-Agent Collaboration in Robot
Soccer”, Proceedings, TAINN 2004, Turkish Symposium On Arti-
ficial Intelligence and Neural Networks, June 10-11, 2004, Izmir,
Turkey, pp.219-228.

[25] Anon., “Chain-of-responsibility pattern”, Wikipedia, 2007.

[26] Anon., “Factory method pattern”, Wikipedia, 2007.

[27] Anon., “Aspect-oriented programming”, Wikipedia, 2007.

[28] Anon., “Matlab Fuzzy Logic Toolbox”, Mathworks, Inc., 2007.

[29] Hengst, B. D. Ibbotson, S. B. Pham, and C. Sammut
“Omnidirectional Locomotion for Quadruped Robots”, RoboCup
2001 : Robot Soccer World Cup V , LNAI vol. 2377, pp. 368-373,
2002.

[30] UNSW 2003 team report
“http://www.cse.unsw.edu.au/∼robocup/report2003.pdf”

[31] UNSW 2000 team report
“http://www.cse.unsw.edu.au/∼robocup/2002site/2000PDF.zip”

[32] Beyer, H. G., Theory of Evolution Strategies, Springer, 2001.

[33] Michel, O. “Webots: Professional Mobile Robot Simulation”, Inter-
national Journal of Advanced Robotic Systems, Vol. 1, pp. 39-42,
2004.

71

