
Cerberus’05 Team Report

H. Levent Akın1

Çetin Meriçli1

Tekin Meriçli2

Kemal Kaplan1

Buluç Çelik1

Artificial Intelligence Laboratory

Department of Computer Engineering
1Boğaziçi University

34342 Bebek, İstanbul, Turkey

{akin, cetin.mericli, kaplanke, buluc.celik}@boun.edu.tr

2Marmara University

Department of Computer Engineering

Göztepe, İstanbul, Turkey

tmericli@cs.utexas.edu

November 7, 2005

Contents

1 Introduction 1

1.1 Cerberus Station . 1
1.2 Cerberus Player . 2

1.2.1 Core Object . 2
1.2.2 Communication Object 3
1.2.3 Dock Object . 3

2 Vision Module 4

2.1 Color Classification . 5
2.2 Finding Regions . 5
2.3 Line Perception . 6
2.4 Object detection . 8

3 Localization 10

3.1 My Environment . 10
3.1.1 General Outline of ME 11
3.1.2 Architecture of ME . 12
3.1.3 Procedures of ME . 14
3.1.4 Advantages and Disadvantages of ME 17

3.2 S-LOC: Simple Localization 18
3.2.1 General Outline of S-Loc 19
3.2.2 Architecture of S-Loc 20
3.2.3 Procedures of S-Loc 21
3.2.4 Advantages and Disadvantages of S-Loc 25

4 Planning 26

4.1 Potential Field Planner . 26
4.2 Task Allocation . 27

5 Motion 29

5.1 Kinematic Model . 29
5.2 Walking Styles . 30
5.3 Omnidirectional Motion . 31

5.3.1 Representing the Locus 32

i

5.4 Object-oriented Design . 34
5.5 Parameter Optimization . 35

6 Results 39

6.1 Games . 39
6.2 Technical Challenges . 39

6.2.1 Open Challenge . 39
6.2.2 Localization Challenge 40
6.2.3 Variable Lighting Challenge 40

References 41

ii

Chapter 1

Introduction

The “Cerberus” team made its debut in RoboCup 2001 competition. This
was the first international team participating in the league as a result of the
joint research effort of a group of students and their professors from Boğaziçi
University (BU), Istanbul, Turkey and Technical University Sofia, Plovdiv
branch (TUSP), Plovdiv, Bulgaria. The team competed also in Robocup
2002 and Robocup 2003. Currently Boğaziçi University is maintaining the
team and it is the only team participating from East Europe. This year,
despite the fact that it was the only team competing with ERS-210s (not
ERS210As), Cerberus won the first place in the technical challenges.

The entire software system of Cerberus was designed and developed from
scratch this year. As opposed to the previous years, we began with devel-
oping a framework which makes all of our modules platform and hardware
independent and allows us to transfer from or to the robot any input, out-
put or intermediate data of the modules. This infrastructure enables us
to have a considerable speed-up during development and testing. The first
goal of our team was to develop a platform where we can combine research
and development techniques with software engineering methodologies. After
a thorough inspection of previous works of our team and other teams, we
decided to divide the project into two main parts as follows:

• Cerberus Station

• Cerberus Player

In the next subsections we describe these parts.

1.1 Cerberus Station

This is the off line development platform where we develop and test our
algorithms and ideas. The whole system is developed by using Microsoft
.NET technologies and contains a set of monitors which enable visualizing

1

several phases of image processing, localization, and locomotion informa-
tion. We have included record and replay facilities which allow us to test
our implementations without deploying the code on the robot each time. It
is possible to record live images, classified images, regions found, perceived
objects and estimated pose on the field in real time to a log file and replay
it in different speeds or frame by frame. Cerberus Station also contains a
locomotion test unit in which all parameters of the motion engine and spe-
cial actions can be specified and tested remotely. For debugging purposes,
a telnet client and an exception monitor log parser are also included in the
station. Since each sub-module of the robot code is hardware independent,
all modules can be tested and debugged in the station. This hardware and
platform independence provides great savings on development time when
combined with the advanced raw data logging and playback system. Cer-
berus Station communicates with the robots via TCP and uses a common
serializable message structure for information exchange.

1.2 Cerberus Player

Cerberus Player is the part of the project that runs on the robots. Most of
the classes in Cerberus Player are implemented in a platform independent
manner, which means we can cross-compile them in various operating sys-
tems like OPEN-R, Windows or Linux. Although, robot dependent parts
of the code are planned to run only on the robot, a simulation system for
simulating locomotion and sensing is under development. The software ar-
chitecture of Cerberus Player consists of four objects:

• Core Object

• Locomotion

• Communication

• Dock Object

In the following subsections we describe these objects.

1.2.1 Core Object

The main part of the player code is the Core Object. This object coordi-
nates the communication and synchronization between the other objects.
All other objects are connected to it. Core Object takes the camera image
as its main input and sends the corresponding actuator commands to the
locomotion engine. Core Object is the container and hardware interface of
Vision, Localization and Planner modules. This combination is chosen be-
cause of the execution sequence of these modules. All of them are executed

2

for each received camera frame and there is an input-output dependency
and execution sequence that is from vision → localization → planner.

1.2.2 Communication Object

Communication Object is responsible for receiving game data from the game
controller and managing robot-robot communication. Since the TCPGate-
way object which was the only communication interface allowed so far will
no longer be supported, both the game controller and robot-robot commu-
nication infrastructure have been rewritten. They both use UDP as the
communication protocol.

1.2.3 Dock Object

Dock Object is the object which manages the communication between a
robot and the Cerberus Station. It redirects the received messages to Core
Object and sends the debug messages to the station. Dock Object uses TCP
to send and receive serialized messages to and from Cerberus Station.

3

Chapter 2

Vision Module

The Vision module is responsible for information extraction from received
camera frame. Image processing starts with receiving a camera frame and
ends with an egocentric world model consisting of a collection of visual
percepts as shown in Fig. 2.1. The Vision module is written from scratch this
year and several novel approaches for image processing have been introduced.

Figure 2.1: Phases of image processing. a) Original image, b) Color classified
image, c) Found blobs, d) Perceived objects e) Egocentric view

4

2.1 Color Classification

First, we have decided not to use previously implemented color classifica-
tion methods like decision trees and nearest neighbor [1]. Instead, we have
implemented a Generalized Regression Network (GRNN) [2] for color gen-
eralization. After labeling a set of images with the proper colors, a GRNN
is trained with the labeled data. After the training phase, the network is
simulated for the input space to generate a color lookup table for four bits
(16 levels) of Y, six bits (64 levels) of U and six bits of V. The resultant
color lookup table is very robust to luminance changes and allows our vi-
sion system to work without using any kind of extra lights other than the
standard ceiling fluorescents. This is proven by being one of the few teams
which managed to score a goal in the variable lightning challenge.

2.2 Finding Regions

This sub-module is responsible for processing a labeled image and extracting
the potentially significant regions for the perception sub-modules.

We use a new approach for this sub-module. Instead of using run length
encoding (RLE), we use an optimized region growing algorithm that per-
forms both connected component finding and region building operations at
the same time. This algorithm works nearly two times faster than the well
known RLE-Find connected components-build regions approach.

The approach which uses RLE first runs RLE on the image, connects the
runs to find the connected components, filtering out potentially insignificant
components, and finally rotating the regions. Fig. 2.2 shows an RLE sample.

Figure 2.2: An RLE sample

Our new approach, on the other hand, uses a region growing algorithm
directly on the raw image. Starting from leftmost top pixel, each pixel is
processed in the following manner:

• If it was not labeled, it receives a new label

• It is compared with its consecutive pixel on the right. If they are of
the same color and the consecutive pixel is labeled with a different
label from the pixel which is being processed, then the labels of both

5

pixels are noted to be united. If they are of the same color and the
consecutive pixel has no label, then the consecutive pixel is labeled
with the same label with the pixel which is being processed.

• It is compared with its consecutive pixel at the bottom. If they are
of the same color, then the consecutive pixel is labeled with the same
label with the pixel which is being processed.

At this point, the sub-regions and notes indicating the subregions to be
combined are prepared in just one pass on the image. Next, the sub regions
are combined according to the prepared notes. Fig. 2.3 shows a sample with
the new approach.

Figure 2.3: A sample with the new approach

After obtaining the combined sub-regions, they are filtered for significant
regions and rotated as in other approaches.

2.3 Line Perception

Line perception process is an important part of the vision module, since
it provides important information for the localization module. The sample
images from line perception process are shown in Fig. 2.4. The proposed
approach is as follows:

• Hough transform is applied on the white pixels which are close enough
to green pixels using Robert’s Cross on their Y band as the first oper-
ation.

• Two thresholds are used to check each entry in the table prepared in
Hough transform. The first threshold is the minimum acceptable value
for the line’s entry, whereas the second one is minimum acceptable
value for the sum of entries of the line and its neighbors. For a line
entry to be accepted, it should also be a local maximum.

• For a chosen line, to decrease the quantization error, the weighted
average of its angle and the perpendicular distance are taken, where
weights are the values in the Hough transform table.

6

• Now, we have a more or less fine tuned line, but it is still the border
of the field line. Especially in images where field lines are close to the
camera, the lines occupy a thick region. The selected line is shifted
along its normal vector orientation. The amount and the direction
of the shift are calculated by following the normal line at different
intervals.

• The lines are rotated according to the pan and the tilt of the camera.

• Then, the lines are mapped to the real 3D field using geometrical
transformations.

• Once the lines are mapped to the field, they are still relative to the
camera. As they need to be relative to the chest of the robot, they are
transformed accordingly.

• Finally, extra copies of the same line, which is a rare but possible
situation, are eliminated.

Figure 2.4: Phases of Line Detection. a) Original image, b) Color classified
image, c) Perceived lines e) Egocentric view

7

2.4 Object detection

The classified image is processed in order to obtain blobs. Here, we use a
new approach. Instead of using run length encoding (RLE), we use an op-
timized region growing algorithm that performs both connected component
finding and region building operations at the same time. This algorithm
works nearly two times faster than the well known RLE → Find connected
components → build regions approach. Another novel approach used is the
concept of a bounding octagon of a region. Since the robot must turn its
head in order to expand its field of view, it is necessary to rotate the ob-
tained image according to the actual position of the head. However, since
rotation is a very expensive operation, it is not wise to rotate the entire im-
age. For this reason typically only the identified regions are rotated. Since
octagons are more appropriate for rotation than rectangular boxes, using
octagons instead of boxes to represent regions reduces the information loss
due to rotation.

Our vision module employs a very efficient partial circle fit algorithm
for detecting partially occluded balls and the balls which are on the borders
of the image as shown in Fig. 2.5. Since accuracy in the estimation of
ball distance and orientation is needed mostly in cases where the ball is
very close and it is so often that the ball can only be seen partially in such
cases, having a cheap and accurate ball perception algorithm is a must. The
equation for estimating the ball radius is

r =
h

2
+

s × s

8 × h
(2.1)

where r is the radius, h is the height of the ball region and s is the width of
the ball region. Although this estimation can be used for different types of
ball segments (i.e ball segments in different parts of the captured image), the
ball center estimation requires separate handling of different partial image
conditions.

The recognition of objects on the field is based on objects’ colors and
sanity checks performed on the candidate regions. The sanity check process
has three phases.

• Phase 1. The candidate region should satisfy object specific precon-
dition checks. For example, the lower edge of the goal or the lowest
point of the ball should not be outside of the field region. Of course
this control requires a field region (i.e. a merged green region classi-
fied as the field) and a threshold value which can be modified for each
object type.

• Phase 2. A probability value is assigned for the candidate field. The
probability calculation is based on the properties of the object. For

8

Figure 2.5: Two examples of detecting partial balls via circle fit

example, distance between regions, with respect to the region sizes, has
an important effect on probability of being a pair of beacon regions.

• Phase 3. Some postconditions checks are performed on the surviv-
ing candidate regions. The first postcondition check is usually the
probability thresholds which prun

The final checks for each object is well-documented in the source codes which
can be accessed from our team’s web page.

The vision module is one of the fastest vision systems having the features
described above developed on AIBOs. On our current robots (ERS-210 with
200 MHz processor) a frame is processed in approximately 50 ms which
provides a 20 frames per second speed.

9

Chapter 3

Localization

Localization is one of the main research interests of our research group.
We have a number of different localization engines [3, 4, 5, 6]. We have
used our most recent work (which later turned into an M.Sc. thesis) in
the competition called S-LOC. In this section, S-LOC and history based
egocentric world modeling approach called My Environment are presented.

3.1 My Environment

My Environment was initially designed as a part of the localization module
and aimed to increase the performance of localization. It was then decided
to be a separate module such that not only the localization module, but the
other modules could also benefit from its output.

For a human to predict his/her pose, i.e. his/her coordinates and the
orientation, vision is the primary input. By estimating the distance and the
orientation with respect to known static objects, one can calculate his/her
pose. These estimates are valid for not only when they are seen, but also
for a period of time after they were perceived, with having the estimates’
confidence decreasing in time.

The buffering of objects in the environment can be done either with their
actual poses or their poses with respect to the observer. For buffering the
actual poses of objects in time, the coordinates of the objects with respect to
the environment are calculated using the current perceptions, and stored in
an array of data structures as shown in Figure 3.1.a. The odometry update
and the instantaneous pose calculations are very simple and could be done
at a low cost.

For buffering the relative poses of the objects, the perceived distances
and relative angles are directly stored in an array of data structures which
are used as buffers as shown in Figure 3.1.b. This way, the odometry update
and the instantaneous pose calculations are relatively more complex, and
since they require trigonometric functions, the cost is higher.

10

Figure 3.1: Buffering the poses of objects: (a) Buffering actual poses, and
(b) Buffering the relative poses

Although the cost of buffering relative poses of objects is greater than
the cost of buffering actual poses of objects in time, buffering relative poses
is more robust since it does not involve localization. Involving localization in
the calculation results in involving localization error in the output. For each
stored value on an object’s pose history, having instantaneous localization
error added to the perception error, the estimations on the current pose of
the object would suffer from more noise.

In addition, buffering the relative poses of the objects makes it mean-
ingful to buffer the poses of the static objects. This is very valuable for
localization in two ways. First, the processed static object poses would be
more robust and lead to more accurate agent pose estimations. Secondly,
this buffering will make it possible to process more static objects than that
are seen in any moment of time, as long as the buffered relative poses could
give a proper estimate for the current pose of the static object.

3.1.1 General Outline of ME

My Environment (ME) is a module between the perception module, or any
other module that handles the perception of the environment objects, and
the other modules that use the output of the perception module as shown
in Figure 3.2. In some exceptional cases, where the position and the relative
angle data are not sufficient, the perception data may be needed to be
used directly. For instance, in the robot soccer domain, the ball tracking
behavior for the head, where the coordinates of the perceived ball region
on the camera frame image may be used to calculate the next pan - tilt
parameters, uses the perception output directly.

Localization is one of the modules that requires the perception data.
During the perception update of the localization module, the perceived static
objects are used to estimate the current pose of the agent.

11

Figure 3.2: Interaction of ME with the other modules

The inputs of the perception module are the current internal state of
the agent and the latest camera frame image. Input from the camera is
very noisy most of the time and may cause false perceptions. Not only
the distance of an object could be perceived erroneously, but sometimes
an object itself could be recognized as another object. If the data from
the perception module are used as they are, these errors could result in
unwanted behavior in other modules.

By filtering the output of the perception module and using the past
perceptions of the objects at the same time, more stable and robust data
could be provided for the localization module as well as other modules. This
way the effect of false perceptions and recognitions would be decreased.

It should be kept in mind that for a mobile agent, using the past per-
ceptions can lead to problems if the motion of the agent is not reflected on
the past perceptions.

3.1.2 Architecture of ME

There are two kinds of objects in the ME architecture: static objects and
dynamic objects. Each object, either static or dynamic, has a buffer window
for storing the most recent perception data for that object, and an additional
buffer for the current estimation for that object. The data structure of ME
is shown in Figure 3.3.

Each static object entry has a distance, a relative angle and a confi-
dence regarding its perception. In the case when a static object has its own
orientation, the orientation values are also to be stored in the buffer. For
dynamic objects, the velocity should also be calculated, but as it is not di-
rectly extracted from a single camera frame, it is not necessarily be buffered.
In Figure 3.4a and 3.4b the data structures for static and dynamic objects
are defined.

The window size is a hyper-parameter of ME. The noise in odometry,
the dynamicity of the agent’s pose, and the frequency of the processed vi-

12

Figure 3.3: The data structure of ME

Figure 3.4: Data structures of (a) static objects, and (b) dynamic objects

13

sion frames play an important role in the selection of a good window size
parameter. For dynamic objects, the speed of such objects should also be
taken into account.

For instance, for Cerberus’05, the robots used have a maximum speed
of approximately 30 cm/s (with ERS 210s), the odometry is quite noisy as
the robots are legged, and the average vision frame processing performance
was 18 fps. For such conditions, the size of windows for static objects and
dynamic objects were chosen to be 32 and 12 respectively.

3.1.3 Procedures of ME

There are five main procedures of ME. Other than initialization, the first
two procedures, perception update and odometry update, are triggered as new
perception data from the perception module and new odometry data from
the locomotion module are obtained. The other two, current pose estimation
for static objects and the current pose estimation for dynamic objects, are
called inside the perception update procedure.

Initialization

As an initialization, it is necessary for the pose estimations to set all the
buffers in the windows of all the objects, for both the static objects and the
dynamic objects. If there is no prior information about the pose of an object
when the system has started, all the buffers in its window are to be marked
as unknown. If the initial pose of an object is known a priori, then this can
be provided to the system by filling the buffers in its windows according to
that knowledge.

Perception Update

For each dynamic and static object, the oldest record on the buffer is deleted
and a new record is stored from perception if the object is seen at the
moment, otherwise it is marked that there is information available about
the pose of the object at that time. After updating the buffer with the
latest perception output, an estimation is done for each object concerning
its pose by calling the appropriate procedure in Section 3.1.3 or Section
3.1.3.

Odometry Update

For the odometry update of each record, three trigonometric functions and
a square root is used. For a ME with no number of objects and a window
size of nw, there are no ×nw number of records. These calculations increase
the cost of ME, but they are mandatory for reasonable ME estimations.

14

Since all the information in the buffers of all objects’ windows is relative
to the agent, on each movement action of the agent, they need to be modified.
For each record new relative distance and the relative angle values have to
be calculated using Equations 3.3 and 3.4.

c = cos(θ) × d − ∆x (3.1)

s = sin(θ) × d − ∆y (3.2)

d′ =
√

c2 + s2 (3.3)

θ′ = tan−1(s/c) + ∆θ (3.4)

where θ, d, ∆x, ∆y and ∆θ are the previous relative angle, previous rela-
tive distance, the signed distance the agent moved in sideways, the signed
distance the agent moved on its orientation and the angle the agent has
turned, respectively. The new relative distance and the new relative angle
are represented with d′ and θ′ respectively.

Current Pose Estimation for Static Objects

For each static object, this function is called once in every perception update.
Using the window sized perception data records; a pose estimation is made
for its use in other modules of the agent’s architecture like localization and
planning.

In Equations 3.9, 3.10 and 3.11 the confidence estimation, the relative
distance and relative angle of the static object are calculated.

wj =

nw
∑

i=0

KAj
i × CAj

i × fws(i) (3.5)

∆xj =

∑nw

i=0 KAj
i × DAj

i × cos(AAj
i) × fws(i)

wj

(3.6)

∆yj =

∑nw

i=0 KAj
i × DAj

i × sin(AAj
i) × fws(i)

wj

(3.7)

nj =

nw
∑

i=0

KAj
i (3.8)

cj =

∑nw

i=0 KAj
i × CAj

i × fws(i)

wj

× fwc(nj) (3.9)

dj =
√

∆x2
j + ∆y2

j (3.10)

θj = tan−1(∆yj/∆xj) (3.11)

where j is the index of the object, nw is the window size; wj is the total
weight for the jth object, fws(i) gives the weight of the ith record for a

15

static object; fwc(nj) gives the weight for the confidence of an object with

nj known records in its windows; KAj
i is a flag which is equal to one if the

ith record of the jth object exists (i.e. the object was perceived at the time
that record was buffered) and zero otherwise; DAj

i is the distance of the ith

record of the jth object; AAj
i is the relative angle of the ith record of the jth

object; CAj
i is the confidence of the ith record of the jth object; cj is the

confidence estimation of the jth object; dj is the relative distance estimation
of the jth object; and θj is the relative angle estimation of the jth object.

The function fws(i) is a monotonically increasing function. The value
of fws(i) is to be arranged such a way that the more recent a record it is
the more weight it will receive, but at the same time it will not let too
small number of records (i.e. one or two) dominate the value of the weight.
Although a linear function could easily be used for that purpose, a sigmoid
function was expected to give better results if configured properly for the
application.

The function fwc(i) is also a monotonically increasing function for favor-
ing the confidence with respect to the number of records of which poses are
available.

If nj is zero, meaning that none of the buffers in the window stores a
perceived pose, then no estimation could be made and the object’s pose is set
as unavailable. After the confidence is calculated, if it is below a predefined
threshold, the object’s pose is also set as unavailable.

Current Pose Estimation for Dynamic Objects

The procedure of the current pose estimation for the dynamic objects is the
same as the current pose estimation for the static objects except that for
dynamic objects the speed and the direction of the speed should also be
calculated when possible. For each dynamic object, this function is called
once in every perception update. Using the same equations in Section 3.1.3
the pose estimation, with the exception of the speed related variables, is
performed, but the fws(i) function is replaced with fwd(i), which gives the
weight of the ith record for the dynamic object.

If an object is dynamic, perceiving the object in different poses may be
either due to noisy perception or the object’s movement. If the object’s
recent poses are buffered and used for the estimation of the current pose,
the weights of the most recent records should be higher than they are for
static objects, which should always be perceived in the same pose. As a
remark, it should be noted that the effect of the movement of the agent is
eliminated with the motion update procedure.

The function fwd(i) is also a monotonically increasing function as the
function fws(i) is, but favors the most recent records more than fws(i). Since
the older records are less important for the dynamic objects, the window size
for the dynamic objects could be set smaller than the window size set for

16

the static objects.
The speed of a dynamic object is estimated only if the pose of the object

was available from the previous run, otherwise the speed is set as unavailable.
In Equations 3.13 and 3.14 the speed and relative direction of the speed

of the dynamic object are calculated.

hj = d2
j + d2

j−1 − 2 × dj × dj−1 × cos(θj − θj−1) (3.12)

αj = Π − cos−1(
hj − d2

j + d2
j−1

2 × hj × dj−1
) − θj−1 − θj (3.13)

sj =

√

hj

∆t
(3.14)

where j is the index of the object, dj is the relative distance estimation of
the jth object; θj is the relative angle estimation of the jth object; αj is the
relative direction of the speed estimation; and sj is the speed estimation.

3.1.4 Advantages and Disadvantages of ME

ME provides more stable results for both static and dynamic objects. For
static objects, especially in the case when localization does not give accurate
results, the pose of the static object at ME would be more robust. For
localization, the ME output poses can be used as if they were perceived from
the sensors at that time. In this way, perceived objects are not forgotten
just after they are perceived, but remain in ME for a specific period of time.
In addition, the noisy perception, which from time to time may lead to false
object detections, could be stabilized.

ME provides more stable results for dynamic objects as well. Using the
ME output instead of the perception output directly, instantaneous fluctu-
ations in the pose of the object are smoothened. Losing the dynamic object
in some camera frames and perceiving it again frequently, which is not a
rare thing in robot soccer, could lead to oscillations in the operations and
the outputs of some of the modules. ME smoothens these oscillation with
its pose estimation, where it uses the recent perceptions to calculate the
current pose.

These advantages have a cost. The space needed to store the pose buffers
and current estimations of objects in ME grows linearly with the product
of window size of the pose buffers and the number of objects in ME. The
complexity of the ME procedures is O(nw×no), where nw is the window size
and no is the number of objects in ME. Using the output of the perception
module, both the processing power and memory expenses of ME will be
saved, but if the system can afford these expenses, the benefits of ME could
be worthwhile.

It should also be noted that using ME, the agent would observe dynamic
objects slower than they are. This is because of using the previous poses of

17

the dynamic object in the calculation of the current pose. This problem
could be minimized theoretically by adding the velocity of the previous
estimation times the time passed to the previous records of that object,
but this could bring more noise than it makes corrections as the velocity
estimations could be noisier than the relative position estimations.

3.2 S-LOC: Simple Localization

During the development of the localization module of Cerberus’05, many
techniques were taken into consideration.

• Triangulation is a simple and accurate technique, but is not robust. It
is too much effected by noise, specially by the false perceptions [7].

• The major disadvantage of Kalman Filter methods is that they do not
have the capability of recovering from kidnapping [10, 11].

• ML approaches are generally expensive, where false perceptions could
be big problems [12, 13].

• Raw MCL cannot recover from kidnapping, but a version of it, SRL is
implemented [14, 15, 16].

• ML-EKF is also another expensive technique, which would not be pre-
ferred in a case where a much lower cost algorithm could give accurate
and robust results [17, 18].

• Fuzzy localization techniques generally have high computational com-
plexity, and do not give results with enough accuracy that are worth
the cost [8, 9].

• R-MCL is also another technique, which is used in the experiments for
comparison purposes [3, 4, 5].

Considering the points above, it was decided to implement S-Loc to-
gether with a version of SRL. The existing R-MCL module implemented in
our laboratory is also used in the experiments.

In general, the localization process has two main steps. The first one
is the perception update, which is based on the perceptions in order to
calculate the estimated pose of the agent. Since the movement of the agent
changes its pose, the second step, the odometry update, is necessary for
reflecting the effect of the movement on the calculations and the estimations.

Perception update, as it depends on the perceptional information, usu-
ally includes high amount of noise. Although the agent is dynamic, its pose
should not be highly unstable, i.e. the pose should not jump to different

18

Figure 3.5: The relationship of the S-Loc module with the other modules

poses that are far away on the field frequently. Using a memory for the pre-
vious pose estimate, and updating it with the current estimate could handle
the big fluctuations and increase the robustness to the false perceptions of
static landmarks.

In order to use triangulation, three objects, which are not available at
the same time frequently, are needed to be perceived. Also, even if three
objects are available, in the case where one of the perceptions is wrong or is
highly noisy, the calculation will lead to a very noisy pose estimation.

In the MCL, there is a large number of sample poses, for which many cal-
culations should be made in order to find their confidences. Generally, most
of these samples do not hold any useful information. Also, noisy perception
data may lead to unstable pose estimations.

The principle of ML leaves open how the robot’s belief is represented and
how the conditional probabilities are computed. Existing ML approaches
mainly differ in the representation of the state space and the computation
of the perceptual model. These approaches are generally expensive, since
the space is discretized and for each perception and for each location, the
probabilities should be calculated at each frame. False perceptions could
also be major problems.

In the perfect, noise-free case, the odometry data should be continuous
and the pose should be updated continuously as the agent moves. On the
other hand, in the real world case, the odometry data is generally very noisy,
especially when the agent uses legs for locomotion; and arrives at discrete
times, for instance after a step is completed. Both of these make the previous
pose estimates less confident for the current estimate calculations.

3.2.1 General Outline of S-Loc

S-Loc is a localization module. It needs the perception data and the odom-
etry data for updating the pose estimate, which it provides as the output.
This pose estimate is then used in other modules. The relationship of the
S-Loc module with the other modules is shown in Figure 3.5.

19

Figure 3.6: The perception update process

The perceived data can be obtained directly from the vision module (or
any other perception module), or they can be supplied by the ME module
where they are buffered and estimates using them are produced. It could
perform better if the perceptional input is provided by the ME module,
because the ME module provides more stable and robust data.

The locomotion module provides the odometry data at certain times,
which is generally less frequent than the perception data. The effect of the
movement of the agent should also be reflected on the pose estimate.

3.2.2 Architecture of S-Loc

The perception update of the S-Loc depends on the perception of landmarks
and the previous pose estimate. The perception update process is shown in
Figure 3.6. Even if the initial pose estimate is provided wrong, it acts as a
kidnapping problem and is not a big problem as S-Loc will converge to the
actual pose in a short period of time if enough perception could be obtained
during this period.

For each perceived landmark, a sample pose is calculated according to
this perception and the previous pose estimate of the agent. The previous
pose estimate is also taken as a sample pose.

For each sample pose, using all the landmarks, the likelihood of this
sample pose is calculated. This is done by assuming that the agent’s actual
pose is the sample pose being processed and calculating the difference of
the perceived landmarks positions and their actual positions. Also, the
confidence of the perception is reflected on the likelihood.

After these likelihood calculations are done for each sample pose, these
likelihoods are used for calculating the weights of the corresponding sample
poses, and a new pose is calculated as the weighted average of these sample

20

poses.
The weighted average of these sample poses is then used together with

the previous pose estimate to calculate the current pose estimate. The
purpose of not using the weighted average of these sample poses is to directly
provide the system enough memory to prevent big jumps of the pose estimate
and make it more stable.

After the current position of the agent is estimated, it could be safer
to calculate the current orientation of the agent using the current position
estimation and the perceptions.

In the case of having no perception at a certain time, the current pose
estimate could be obtained by decreasing the confidence of the previous pose
estimate.

The odometry update process is as simple as updating the pose estima-
tion with the odometry data. Since only the pose estimation is used from
the previous cycle of every estimation, no more update or calculation is nec-
essary. On the other hand, if the frequency of the odometry update is much
less than the frequency of the perception update, then it may be better to
lower the weight of the odometry data accordingly. This is because having
the original odometry data to be the result of the motion during more than
one perception updates.

3.2.3 Procedures of S-Loc

There are three main procedures of S-Loc. The initialization is the first one.
Other two procedures, perception update and odometry update, are triggered
as new perception data from the perception module and new odometry data
from the locomotion module arrive.

Initialization

The only thing to be done in the initialization procedure is to initialize the
pose estimate to initial value. It does not have to be the actual pose that
the agent will have at the beginning, since S-Loc module can recover from
kidnapping. On the other hand, it should still be set to a valid pose initially
in order not to cause a problem in the proceeding calculations.

Perception Update

As shown in Equations 3.15, 3.16, 3.17, 3.18 and 3.19, the first pose sample
is the previous pose estimate.

PSA0
x = PEx (3.15)

PSA0
y = PEy (3.16)

PSA0
θ = PEθ (3.17)

21

PSA0
c = PEc (3.18)

PSA0
w = PEc × fwpu2(PSA0

x, PSA0
y, PSA0

θ, PA) (3.19)

PA0
k = 1 (3.20)

where PS0
x, PS0

y , PS0
θ , PS0

c and PS0
w are the x-coordinate, y-coordinate,

orientation, confidence and weight of the first pose sample; PEx, PEy PEθ,
and PEc are the x-coordinate, y-coordinate, orientation and confidence of
the pose estimate before the perception update; PA, percepts array, is the
collection of perception data of all the perceived landmarks together with
their coordinates that are known initially; fwpu2 is the function that returns
a weight component for a pose according to the current perceptions; and
PA0

k is set to one in order to have the first element of pose sample array
included in the proceeding calculations.

Then, a separate pose sample is calculated for each perception as in the
Equations 3.22, 3.23, 3.25, 3.26 and 3.27.

αi = tan−1

(

PEy − PAi
y

PEx − PAi
x

)

(3.21)

PSAi
x = PAi

x + PAi
d × cos(αi) (3.22)

PSAi
y = PAi

y + PAi
d × sin(αi) (3.23)

βi = tan−1

(

PSAi
y − PAi

y

PSAi
x − PAi

x

)

(3.24)

PSAi
θ = π + βi − PAi

θ (3.25)

PSAi
c = PAi

c (3.26)

PSAi
w = fwpu1(PAi) × fwpu2(PSAi

x, PSAi
y, PSAi

θ, PA) (3.27)

where αi and βi are dummy angle variables; PSAi
x, PSAi

y, PSAi
θ, PSAi

c

and PSAi
w are the x-coordinate, y-coordinate, orientation, confidence and

weight of the ith pose sample; PAi
x, PAi

y are the actual x-coordinate and y-

coordinate of the ith landmark in the percepts array; PAi
d, PAi

θ and PAi
c are

the perceived relative distance, relative angle and the perception confidence
of the ith landmark in the percepts array; PAi is the perception data of the
ith perceived landmark which is stored as the ith element of the Perception
Array; and fwpu1 is the function that returns a weight component for a pose
according to the perception for which the pose sample is calculated.

The function fwpu1 returns the first component of the PSAi
w for the

argument PAi. It may return PAi
c directly or any other number that gives

the confidence that the perception is correct. Since the accuracy of the pose
sample will be taken into account by the function fwpu2, this function is
independent of the corresponding pose sample. The purpose of this function
is to decrease the weight of the pose samples, of which the perception is
less confident. In the case where the perception module does not provide

22

healthy confidence values, the perceived relative distance of the landmark
can be used for the calculation of the return value. In such a case, a properly
configured sigmoid function can be very suitable. If the landmarks are of
different types and are known to have different perception accuracy, then
this could also be reflected on the return value.

The function fwpu2 returns the second component of the PSAi
w. The

return value is related to the accuracy of the pose sample according to all
the perceived landmarks. For each perceived landmark, the position of the
perceived landmark is calculated by adding the perceived distance on the
perceived relative angle to the pose sample, and the resulting position is
compared to the actual position of the landmark. The difference gives the
error. The return value should be a function of the error as in Equation
3.30.

parj
x =

∣

∣

∣PAj
x − (PSAi

x + PAj
d × cos(PSAi

θ + PAj
θ))
∣

∣

∣ (3.28)

parj
y =

∣

∣

∣
PAj

y − (PSAi
y + PAj

y × sin(PSAi
θ + PAj

θ))
∣

∣

∣
(3.29)

fwpu2 =

NL
∏

j=1

PAj
k × fwpu3

(

parj
x, parj

y

)

(3.30)

where NL is the number of landmarks; PAj
k is one if the perception of

the jth landmark is available, and zero otherwise; and fwpu3 is a function
that returns a value related to the difference in the x-coordinate and the
y-coordinate.

The return value of the function fwpu3 is a value for the confidence of
the sample pose for the corresponding perceived landmark. The greater
the x-coordinate and y-coordinate differences provided as parameter to this
function, the worse the sample pose fits to that landmark perception and
therefore the less confidence the function shall return.

The calculation of the new pose estimate is the last step of the perception
update. Except the new orientation estimate, all the estimation values are
the weighted average of the recent calculation, which is in turn a weighted
average of sample poses, and the corresponding previous estimate value. The
new orientation estimate is calculated by using the new coordinate estimates
and the perceptions. The new values of pose estimate are calculated from
the Equations 3.33, 3.34, 3.37, and 3.38.

hp = fHP

NL
∑

j=1

PAj
k

 (3.31)

tw =

NL
∑

j=0

(

PAj
k × PSAj

w

)

(3.32)

23

PE∗

x = hp × PEy + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

x × PSAj
w

)

tw
(3.33)

PE∗

y = hp × PEy + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

y × PSAj
w

)

tw
(3.34)

βi = tan−1

(

PE∗

y − PAi
y

PE∗

x − PAi
x

)

(3.35)

wai = fwpu1(PAi) × fwpu2(PE∗

x, PE∗

y , βi, PA) (3.36)

PE∗

θ = tan−1

(

∑NL

i=1

(

PAi
k × sin(βi) × wai

)

∑NL

i=1

(

PAi
k × cos(βi) × wai

)

)

(3.37)

PE∗

c = hp × PEc + (1 − hp) ×

∑NL

j=0

(

PAj
k × PSAj

c × PSAj
w

)

tw
(3.38)

where PE∗

x, PE∗

y , PE∗

θ and PE∗

c are the updated x-coordinate, y-coordinate
and orientation of the pose estimate; and fHP is a function that returns a
history coefficient according to the number of percepts available.

Odometry Update

For the odometry update, the only necessary thing is to update the current
pose estimation with the new odometry data. No more update or calculation
is necessary, because nothing is used from the previous cycle of estimation
other than the pose estimation.

It should also be noted that, in the case where the frequency of the
odometry update is much less than the frequency of the perception update,
transforming the odometry data to lower values may lead to better results
since the original odometry data is the result of the agent’s motion from the
previous odometry update to the current one, and this would last for more
than one perception updates.

In Equations 3.39, 3.40 and 3.41 the new (updated) coordinates and
orientation of the pose estimate is calculated.

PE∗

x = PEx + ∆x × sin(PEθ) + ∆y × cos(PEθ) (3.39)

PE∗

y = PEy + ∆y × sin(PEθ) − ∆x × cos(PEθ) (3.40)

PE∗

θ = PEθ + ∆θ (3.41)

where PE∗

x, PE∗

y and PE∗

θ are the updated x-coordinate, y-coordinate and
orientation of the pose estimate; PEx, PEy and PEθ are the x-coordinate, y-
coordinate and orientation of the pose estimate before the odometry update;
∆x, ∆y and ∆θ are the odometry data giving the change in the x-coordinate,
y-coordinate and orientation.

24

3.2.4 Advantages and Disadvantages of S-Loc

In ML, for each landmark seen the probability distribution is modified ac-
cordingly, and as a result, the final probability distribution is expected to
give the agents real pose. Instead of a probability distribution, a pose, which
is most likely to be the actual pose according to the previous pose estimate,
is used in S-Loc. In this way, as it is the case in ML, the pose estimate
converges to the actual pose of the agent.

Considering only the most likely sample poses, S-Loc acts like a kind of
ML but with a local coverage. Although it has a local coverage, it responds
in a fast manner to the kidnapping problem, as the most likely sample poses
could be far away from the previous pose estimate. In addition, since only
a sample pose for each landmark is calculated, S-Loc has a much lower cost
than ML.

In comparison with triangulation, S-Loc does not calculate the best esti-
mate according to the perception of the moment, but makes the estimation
in a way that it converges to that point in a short period of time. On the
other hand, the effect of the false perceptions is greatly decreased as the sam-
ple pose of such a perception would have a relatively small confidence and
will not play a big role in the pose estimation. In this way, the robustness
is increased without decreasing the performance.

In a way, S-Loc works similarly as the MCL since the sample poses are
used in the same way they are used in MCL. The main difference is the
selection of these sample poses. In MCL, there is a large number of pose
samples, and they are populated according to their confidences, and ran-
domly mutated for small changes. In S-Loc new pose samples are calculated
for each estimation, and a pose sample is calculated for each perceived land-
mark. In this way, S-Loc becomes a much lower cost localization method
with accurate pose estimation capability.

The memory used in the S-Loc increases the robustness of the system
even further and the big jumps of the pose estimate are prevented.

25

Chapter 4

Planning

4.1 Potential Field Planner

We have used finite state machines (FSM) in our planner module in the
previous years. However, since the soccer domain is a continuous environ-
ment and the sensory input, which determines the state transitions, is quite
noisy, discrete planners like FSM suffers from oscillations and quantization
errors. Therefore, we adopted a modified version of Potential Field Planner
(PFP) previously used for wheeled mobile agents in our lab [19]. Potential
Fields is a method of planning robot trajectories based on combining the
vector fields induced by mapped objects, such as repulsive fields for obsta-
cles and attractive fields for goals. In the implementations of potential fields
for robot control, only the force vector for the current robot position is cal-
culated for each object or schema. The sum of these vectors is then used to
control the instantaneous motion of the robot. The process is then repeated
for the next robot position to handle any new perceptual information that
may have become available.

Figure 4.1: Ball Field

Most of the objects on the field require only an impulsive force for pre-
venting collision. Nevertheless, we use an attractive force to move a robot
to a specific location. On the other hand, the attractive simple fields use
a constant force directed to the center of the field. The field generated by

26

the ball is the combination of two potential fields. The first one is a simple
attractive field. The second one is a special circular field located above and
below the line between the ball and the center of opponent goal as shown
in Fig.4.1. The direction of the field is perpendicular to the line segment
between the robot and the center of the nearest circle. On the other hand,
the magnitude of the simple attractive field is constant.

4.2 Task Allocation

Although PFP approach provides a fast reactive controller for a single agent,
soccer is a cooperative game and the robots should cooperate and collab-
orate with the teammates. For this purpose, we employ a market driven
task allocation scheme [20, 21, 22]. In this method, the robots calculate a
cost value (their fitness) for each role. The calculated costs are broadcasted
through the team and based on a ranking scheme, robots chose most ap-
propriate role for their costs. Here, each team member calculates costs for
its assigned tasks, including the cost of moving, aligning itself suitably for
the task, and cost of object avoidance, then looks for another team member
who can do this task for less cost by opening an auction on that task. If one
or more of the robots can do this task with a lower cost, they are assigned
to that task, so both the robots and the team increase their profit. Other
robots take actions according to their cost functions (each takes the action
which is most profitable for itself). Since all robots share their costs, they
know which task is appropriate for each one so they do not need to tell
others about their decisions and they do not need a leader to assign tasks.
If one fails, another would take the task and go on working.

The approach is shown in the flowchart given in Fig. 4.2. The robot
with the smallest score cost CES will be the primary attacker. Similarly the
robot, except the primary attacker, with the smallest Cdef cost will be the
defender. If Cauc is higher than all passing costs (Cbid(i)) then the attacker
will shoot, else, it will pass the ball to the robot with the lowest Cbid(i) value.
The cost functions used in the implementations are as follows:

CES = µ1.tdist + µ2.talign + µ3.clgoal (4.1)

Cbid(i) = µ1.tdist + µ2.talign + µ3.clteammate(i) + CES(i), i 6= id (4.2)

Cauc = CES(id) (4.3)

Cdef = µ5.tdist + µ6.talign + µ7.cldefense (4.4)

where id is the id of the robot, tdist is the time required to move for specified
distance, talign is the time required to align for specified amount, µi are the
weights of several parameters to emphasize their relative importance in the
total cost function, clgoal is the clearance from the robot to goal area-for
object avoidance, cldefense is the clearance from the robot to the middle

27

Figure 4.2: Flowchart for task assignment

point on the line between the middle point of own goal and the ball-for
object avoidance, and similarly clteammate(i) is the clearance from the robot
to the position of a teammate. Each robot should know its teammates score
and defense costs. In our study each agent broadcasts its score and defense
costs. Since the auctioneer knows the positions of its teammates, it can
calculate the Cbid(i=id) value for its teammates.

The game strategy can easily be changed by changing the cost functions
in order to define the relative importance of defensive behavior over offensive
behavior, and this yields greater flexibility in planning, which is not generally
possible.

28

Chapter 5

Motion

This year, ParaWalk engine, which is developed by rUNSWift 4-legged robot
soccer team of UNSW, was used until the development of our own motion en-
gine is completed [23]. Also the qualification video was shot with ParaWalk
because of the ongoing testing of the new motion engine.

At the lowest level, the Aibo’s gait is determined by a series of joint
positions for the three joints in each of its legs. More recently, trajectories
of the Aibos four feet through three-dimensional space have been used to
develop a higher level representation for Aibo’s gait. An inverse kinemat-
ics calculation is then used to convert these trajectories into joint angles.
Among higher-level approaches, most of the differences between gaits that
have been developed for the Aibo stem from the shape of the loci through
which the feet pass and the exact parameterizations of those loci.

5.1 Kinematic Model

At the position level, the problem is stated as, ”Given the desired position
of the robot’s paw, what must be the angles at all of the robots joints?”.

In our approach, inverse kinematics techniques are used to calculate the
desired joint angles while the paw is moving along the path determined by
the locus of the leg. The locus is divided into pStep (to be explained in
Section 5.5) points, and each of these points has (x,y,z) values. When the
paw is to move to the location of the next point on the locus, the following
formulas are used to calculate the necessary joint angles in order to make
the paw move towards this point. A simple representation of an Aibo leg is
illustrated in Figure 5.1.

The law of cosines is used for calculating the knee angle (θ3).

d2 = x2 + y2 + z2 (5.1)

29

Figure 5.1: Simple kinematic model representation for front right leg.

where (x, y, z) represents the 3d coordinates of the paw according to the
shoulder.

I1
2 + I2

2 − 2I1I2 cos(π − θ3) = d2 (5.2)

θ3 = π − arccos(
I1

2 + I2
2 − d2

2I1I2
) (5.3)

Then the abductor angle θ2 is calculated.

θ2 = arcsin(
x

I1 + I2 cos(θ3)
) (5.4)

Finally, rotator angle θ1 is calculated.

θ1 =
y cos(θ2)(I1 + I2 cos(θ3)) + zI2 sin(θ3)

yI2 sin(θ3) − (z cos(θ2)(I1 + I2 cos(θ3)))
(5.5)

5.2 Walking Styles

To produce a walking motion, the legs must not be at the same position
on the walk locus at the same time. Essentially, the legs must move out of
phase of each other. Human walking actually uses a similar approach. One
leg is lifted, moved forward, and then dropped, while the other stays where

30

it was. Once the first step has been taken, the other leg is then lifted and
basically mirrors the same action taken by the first leg.

Different gait types can be obtained by shifting the movement phases of
each leg in different manners. Timing of each leg and resulting walking type
is shown in Figure 5.2

Figure 5.2: Different timing of each legs motion results in different walking
styles [24].

5.3 Omnidirectional Motion

Omnidirectional walking can be thought as the motion of a shopping cart,
and can be obtained by treating the legs as wheels. This is illustrated in
Figure 5.3.

Figure 5.3: Using legs as the wheels of a shopping cart [23].

In order to achieve this motion, 3 walk components named forward, side-
ways, and turn are used. These components are represented as 2-dimensional
vectors and they are added vectorally in order to obtain one resulting vector
and its symmetric part according to the initial paw location. These two
resulting vectors together produces the limits of the locus; that is the limits
of each leg’s area of operation. The body of the robot can be approximated
as a rectangle from the top view and the angle of the turn components

31

can be calculated as the arctan(bodyWidth/bodyHeight). The operation of
obtaining locus limits by using forward, sideways, and turn components is
illustrated in Figure 5.4.

Figure 5.4: Forward, sideways, and turn components are added vectorally
to obtain a resulting vector; which indicates the direction and limit of the
paw movement [25].

Trot gait, in which the diagonally opposed legs are synchronized, is
used as the primary gait type. Omnidirectional motion is inherited from
ParaWalk as it is. The only difference is the meaning of sideways and turn
components. In ParaWalk, default sideways direction is leftwards, and de-
fault turn angle increases counterclockwise. In our approach, default side-
ways direction is rightwards, and default turn angle increases clockwise.
Resulting motions for different combinations of walk components is shown
in Figure 5.5.

5.3.1 Representing the Locus

According to the research done so far, rectangular, trapezoidal and half
elliptic loci are not effective; in fact they have a hindering effect on robot’s
movement. Especially the movement of rear legs is the cause of this effect.
While performing these kinds of movements the leg touches the ground in
the same direction of the movement, which in turn decreases the robot’s
momentum at that time.

Proposed locus is in the shape of an ellipse cut from below in some
proportion. This shape can be approximated by a hermite curve and it is
illustrated in Figure 5.7.

32

Figure 5.5: Resulting motions with different combinations of forward, side-
ways, and turnCW parameters: (a) anly forward, (b) only sideways, (c) only
turnCW, (d) forward and turnCW together [24].

Figure 5.6: Movement of the paw on a (a) rectangular locus and a (b) half
elliptic locus.

Figure 5.7: Proposed locus in the shape of a hermite curve.

33

With the introduction of elliptic locus, this effect is avoided since the leg
touches the ground after moving in the reverse direction of the movement
for a short period of time. This movement type guarantees that the moment
of the robot is not hindered but increased. Also, elliptic locus makes the
movement of the leg smoother.

5.4 Object-oriented Design

Locomotion module is designed by using an object-oriented approach. First
of all, robot is thought as a single object composed of many other objects.
Specifically, an AIBO robot physically consists of four legs, a head, and a
tail, each of which carries different number of joints. Each Leg has three
Joints, which are the rotator, the abductor, and the knee joints. The Head
has three Joints, which are pan, tilt, and roll joints. Finally, the Tail has
two Joints, which are pan and tilt joints. All these objects are defined as
a separate class. The classes used for the locomotion module is shown in
Figure 5.8.

Figure 5.8: Class diagram showing the relations between classes used in the
locomotion module.

Leg class has a method named moveTo for calculating the required joint
angles to be able to reach a specific point in a 3-dimensional space. It
performs the aforementioned inverse kinematics calculations and determines
the knee, abductor, and rotator angles of the leg, respectively.

34

Besides these robot related classes, there are two very important classes.
One is MotionManager class, which is responsible for the coordination of
all movements, and the other is GA class, which is responsible for generat-
ing an initial population according to the sample string provided, and then
performing the main GA operations (reproduction, crossover, mutation) on
each population in order to generate parameter lists to be used during ex-
periment processes.

5.5 Parameter Optimization

There are 11 parameters used by the new walking engine. These parameters
can be categorized as step duration related, locus related, and initial paw
locations related parameters.

1. Step duration related

pStep: Number of steps needed to complete one full step (i.e. the
paw comes back to its initial position).

2. Locus related

fLocH: Height radius of the ellipse to be used as the locus for front
legs.

fLocDH: Perpendicular distance of the center of the ellipse of the
front locus from the initial paw location.

bLocH: Height radius of the ellipse to be used as the locus for rear
legs.

bLocDH: Perpendicular distance of the center of the ellipse of the
rear locus from the initial paw location.

3. Initial paw locations related

hF: Height of the chest of the robot from ground.

hB: Height of the back of the robot from ground.

fs0: Sideway distance of the paws of the front legs from shoulder.

ff0: Forward distance of the paws of the front legs from shoulder.

bs0: Sideway distance of the paws of the rear legs from shoulder.

bf0: Forward distance of the paws of the rear legs from shoulder.

GA is used for optimization of these parameters. Initially, a set of hand-
tuned parameters are given to the GA engine, and it produces some pre-
defined number of chromosomes by distorting the parameter values on the
sample string to obtain a generation. Structure of our parameter set and a
sample string are shown in Figure 5.10 and Figure 5.11, respectively.

35

Figure 5.9: Parameters related to initial paw locations [24].

Figure 5.10: String representation of walking parameters.

Figure 5.11: A sample string.

36

Once a generation is constructed, the process begins. GA engine starts
with the first chromosome and replaces the current parameter values on the
robot side with these new values taken from this chromosome and the robot
starts walking. After the robot completes 8 steps, the fitness of this param-
eter set (chromosome) is calculated according to our fitness function. Since
the main objective of this process is to obtain the optimal parameter set
that provides the faster walking without any diversion, our fitness function
is constructed in such a way that it would promote moving straight forward,
and punish either rotational or sideways diversion. Our fitness function is

fitness = 0.9 ∗ fwd − 0.4 ∗ sdwDiv − 0.4 ∗ rotDiv (5.6)

where fwd is total forward distance reached, sdwDiv is sideways diver-
sion, and rotDiv is rotational diversion. When all the chromosomes are tried
and associated with a fitness value, the reproduction process begins. During
reproduction process, a random number between zero and total fitness val-
ues of all chromosomes is generated and a chromosome is selected by using
the well-known roulette wheel technique. After that second chromosome is
selected similarly. Then these chromosomes exchanges some patterns ac-
cording to a crossover probability rate and generates two new chromosome
to be copied into the new generation. Also, during crossover process, some
parameter values can be changed according to a mutation probability rate.

However, there are some differences between our approach and simple
GA according to the techniques used for performing crossover and muta-
tion operations. In our approach, there are more than one crossover point
determined by the range of parameter category; that is locus related pa-
rameters are exchanged in their own range, and initial paw locations related
parameters are exchanged in their own range. These clusters are shown in
Figure 5.12. Before performing crossover operation, one of the three clusters
is selected, and then the crossover operation is performed within this cluster
as shown in Figure 5.13. In mutation operation, the amount of distortion
is determined according to the fitness value of this chromosome. That is,
if the fitness values is small, the amount of distortion is greater, and if the
fitness value is high, which means that this parameter set is good enough,
then the amount of distortion is smaller.

Finally, Table 5.1 shows the performances of different walking engines,
and improvement provided by our proposed engine.

37

Figure 5.12: A sample chromosome seperated into three parts. These parts
are related to number of waypoints on the locus, shape of the front and back
loci, and initial paw locations, respectively.

Figure 5.13: Technique used for the crossover operation in our approach.

Table 5.1: Walking engine vs. Performance.
Walking Engine Performance

Default Sony-type ≈ 4 cm/sec

ParaWalk ≈ 21 cm/sec

Our engine (hand crafted) ≈ 25 cm/sec

Our engine (optimized) ≈ 27 cm/sec

38

Chapter 6

Results

6.1 Games

This year, Cerberus was the only team competing with ERS-210 robots with
200MHz CPU speed. The rest of the participants were using ERS-7s which
have faster servos, more memory and a faster CPU. During the preparation
to the competition, we have assumed that even though we have one of the
fastest locomotion engine in ERS-210s, the speed of our robots will be much
slower than the ERS-7s. Therefore, in order to save time, we have decided to
use a non-grabing behavior which is based on an “approach the ball and kick
it towards an appropriate direction” approach. In fact, that was a mistake,
because most of the teams had a walking speed nearly equal to ours and we
have suffered so much from spending time to align to the ball for kicking.
This was the major reason for losing soccer games.

6.2 Technical Challenges

Contrary to the games, we have shown a good performance in the chal-
lenges and won the technical challenges! Even though we could not show a
good performance in the soccer games, our modules were so powerful when
considered individually and they brought the first place to us.

6.2.1 Open Challenge

In the open challenge, we presented a pool game in which the robot tried to
score by hitting a ball with another ball. Unfortunately, we had a “Demo
Syndrome” and our robot failed to kick the ball during the demo. This
resulted in quite low points from the audience.

39

6.2.2 Localization Challenge

In the localization challenge, our robot could not hit the points but the
adaptation speed of the robot to the unknown environment was too fast so
our traversal time of five points was very short. As a result, we received a
high point from that challenge.

6.2.3 Variable Lighting Challenge

The variable lighting challenge was the one in which we thanked so much
to our really great vision module. It’s quite hard to believe but we did not
prepare especially for this challenge. During the competition, other teams
were taking sample pictures by darkening the spots when there aren’t games
in the fields and working so hard on preparing their robots for the challenge.
We did not take any pictures especially for this challenge, we also did not
train a special color table for this purpose. We just used the very same color
table which we used in the games. When the challenge started, everyone was
surprised because all the other teams were assuming that the changes in the
lighting will occur by darkening the environment. But the TC had decided
not to remove the regular spots (because removing the spots might affect the
neighbor field which was the one that the third place and the final games
would be played on), but to introduce extra spots emitting yellow-white
light.

Our robot was among a few robots that could manage to score. Even
in the parts that the extra spots were flashing and the ball was right in the
middle of the region that the light of extra spots fell on, it did not lose the
ball even for a short duration of time and scored a good goal. That goal
brought us the trophy.

The winning prize was an ERS-7 and it was so meaningful to win an
ERS-7 with a 4 years old ERS-210.

40

Bibliography

[1] YILDIZ, O. T, L. Akarun and H. L. Akın, “Fast nearest neighbour
testing algorithm for small feature sizes”, Electronics Letters,Vol 40,
No 3, pp. 171-172, February 2004.

[2] Schioler, H. and Hartmann, U., “Mapping Neural Network Derived
from the Parzen Window Estimator”, Neural Networks, 5, pp. 903-
909, 1992.

[3] Kose, H and H. L. Akın, “Experimental Analysis And Comparison Of
Reverse-Monte Carlo Self-Localization Method”, CLAWAR/EURON
Workshop on Robots in Entertainment, Leisure and Hobby, Decem-
ber 2 – 4, 2004, Vienna, Austria.

[4] Kose, H and H. L. Akın, “Robots From Nowhere,” RoboCup 2004:
Robot Soccer World Cup VIII, LNCS 3276, pp.594-601, 2005.

[5] Kose, H and H. L. Akın,“A fuzzy touch to R-MCL localization algo-
rithm”, Robocup 2005 Symposium. (accepted)

[6] Kaplan, K. B. Çelik, T. Meriçli, Ç. Mericli and H. L. Akın, “Practical
Extensions to Vision-Based Monte Carlo Localization Methods for
Robot Soccer Domain” Robocup 2005 Symposium. (accepted)

[7] Hightower, J., and G. Borriello, “A Survey and Taxonomy of Loca-
tion Systems for Ubiquitous Computing”, Technical Report UW-CSE
Tech Report No:01-08-03, 2001.

[8] Buschka, P., A. Saffiotti, and Z. Wasik, “Fuzzy Landmark-Based
Localization for a Legged Robot” Proc. of the IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS) Takamatsu, Japan, July
2000, pp. 1205-1210, 2000.

[9] Saffiotti, A., A. Bjorklund, S. Johansson, and Z. Wasik, “Team Swe-
den”, RoboCup 2001: Robot Soccer World Cup V, Springer-Verlag,
Seattle, Washington, Lecture Notes in Computer Science Series, Vol.
2377, pp 725-729, 2002. 2001.

41

[10] Stroupe, A.W., and T. Balch, “Collaborative Probabilistic Constraint
Based Landmark Localization”, Proceedings of the 2002 IEEE/RSJ
Intl. Conference on Intel- ligent Robots and Systems EPFL, Lau-
sanne, Switzerland, pp. 447-452, 2002.

[11] Stroupe, A.W., K. Sikorski, and T. Balch, “Constraint-Based Land-
mark Localization”, RoboCup 2002: Robot Soccer World Cup VI,
Springer-Verlag, Fukuoka, Busan, Lecture Notes in Computer Sci-
ence Series, Vol. 2752, pp 8-24, 2003. 2001.

[12] Fox, D., W. Burgard, and S. Thrun, “Markov Localization for Mobile
Robots in Dynamic Environments”, Journal of Artificial Intelligence
Research, Vol. 11, pp. 391-427, 1999.

[13] Schulz, D., and W. Burgard, “Probabilistic State Estimation of Dy-
namic Objects with a Moving Mobile Robot”, Robotics and Au-
tonomous Systems 34, Elsevier, pp. 107-115, 2001.

[14] Thrun, S., D. Fox, W. Burgard, and F. Dellaert, “Robust Monte
Carlo Localization for Mobile Robots”, Artificial Intelligence, Else-
vier, Vol. 128, pp. 99-141, 2001.

[15] Schulz, D., and W. Burgard, “Probabilistic State Estimation of Dy-
namic Objects with a Moving Mobile Robot”, Robotics and Au-
tonomous Systems, Elsevier, Vol. 34, pp. 107-115, 2001.

[16] Lenser, S., and M. Veloso, “Sensor Resetting Localization for Poorly
Modelled Mobile Robots”, Proc. ICRA 2000, IEEE, Vol. 2, pp. 1225-
1232, 2000.

[17] Gutmann, J.S., and D. Fox, “An Experimental Comparison of Lo-
calization Methods Continued”, In Proc. of the 2002 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS02), Lausanne,
Switzerland, pp 454-459, 2002.

[18] Gutmann, J. S., “Markov-Kalman Localization for Mobile Robots”,
Int. Conf. on Pattern Recognition (ICRP), Vol. 2, No. 2, pp. 601-604,
2002.

[19] KAPLAN, K. and H. L. Akın, “A Controller Design for Soccer Robot
Teams”, IJCI Proceedings of International XII Turkish Symposium
on Artificial Intelligence and Neural Networks TAINN 2003, 1, 1,
July 2003.

[20] KOSE, H., Ç. Meriçli, K. Kaplan and H. L. Akın, “All Bids for One
and One Does for All: Market-Driven Multi-Agent Collaboration in
Robot Soccer Domain”, Computer and Information Sciences-ISCIS

42

2003, 18th International Symposium Proceedings, LNCS 2869, pp.
529-536, 2003.

[21] KOSE, H., K. Kaplan, C. Mericli and H. L. Akın, “Genetic Al-
gorithms Based Market-Driven Multi-Agent Collaboration in the
Robot-Soccer Domain”, FIRA Robot World Congress 2003, Octo-
ber 1 - 3, 2003, Vienna, Austria.

[22] KOSE, H, U. Tatlidede, C. Mericli, K. Kaplan and H. L. Akın, “Q-
Learning based Market-Driven Multi-Agent Collaboration in Robot
Soccer”, Proceedings, TAINN 2004, Turkish Symposium On Arti-
ficial Intelligence and Neural Networks, June 10-11, 2004, Izmir,
Turkey, pp.219-228.

[23] Bernhard Hengst, Darren Ibbotson, Son Bao Pham, Claude Sammut
Omnidirectional Locomotion for Quadruped Robots
School of Computer Science and Engineering, University of New
South Wales

[24] UNSW 2003 team report
“http://www.cse.unsw.edu.au/∼robocup/report2003.pdf”

[25] UNSW 2000 team report
“http://www.cse.unsw.edu.au/∼robocup/2002site/2000PDF.zip”

Prepared in LATEX2ε by RCJ

43

