CMurfs: Carnegie Mellon United Robots for Soccer

Manuela Veloso, Somchaya Liemhetcharat,
Brian Coltin, Cetin Mericli, and Junyun Tay

Computer Science Department, Carnegie Mellon University, USA

1 Introduction

In RoboCup’2009 SPL, Carnegie Mellon University participated as CMWrEagle, a
joint team between the University of Science and Technology of China, led by Professor
Xiaoping Chen, and Carnegie Mellon University, led by Professor Manuela Veloso.

For RoboCup’2010, Carnegie Mellon University will be participating as a sole team:
CMurfs - Carnegie Mellon United Robots for Soccer. We are investigating vision, world
modelling, utility-based behaviors, and team coordination.

In this paper, we describe the components of our codebase developed for RoboCup’2009,
and highlight research areas that we will investigate for RoboCup’2010.

2 Architecture

Our architecture diagram for RoboCup’2009 is shown in Figure 1. The key idea of
our architecture design is to separate the logic of the robots from the calls required by
the Nao’s SDK - NaoQi. This isolates NaoQi-related code, which allows us to upgrade
between versions of NaoQi more easily. Furthermore, the non-NaoQi-dependent com-
ponents can be individually tested from a multitude of sources, so we can plug-and-play
between modules that run through NaoQi, custom-made simulators, as well as running
from logs that we create.

Another aspect of our architecture is the Agent component. Previously, we had a
large Features vector that each of the components (such as Vision and World Model)
would fill in. In addition, components would call functions on each other, making the
components tightly-coupled. By creating the Agent component which acts as the proxy,
each component is now isolated from the rest, and can be easily understood as a black-
box that provides certain output given certain input. This removes the coupling effect
between the components, so that we can test each component individually, as well as
plug-and-play different versions of components if required.

Our experience in RoboCup’2009 showed that the decoupling of NaoQi from other
components was a wise decision. We updated our version of NaoQi thrice during the
development of our code for RoboCup’2009, and minimal changes were required in our
codebase. In addition, we developed many tools, such as a Remote Control interface, a
Graphical Debug Display, and a Log Reader, that were NaoQi-independent, and were
able to take advantage of the new architecture.

In addition, over the course of development for RoboCup’2009, we added a feed-
back mechanism that allowed components to provide feedback to other components.

robotstate ™\ visionFeature:

ﬁ World Model

messagesToSend,

. d command,
Game Controller (3}, RS e Behaviors
@ e ©
e . T o
! amestate,
isionFeatu
" i

messagesReceived

robotstate, [|
motionState

8.©
Main Module
+

motionCemmand | | motionstate

1
Motion Module

Fig. 1. Diagram of our architecture

For example, when the Behaviors component detected that the robot has fallen, it would
feedback to the Localization and World Model components to reset. For RoboCup’2010,
we will continue to improve our architecture design, and allow more fluid feedback be-
tween components.

3 Vision

The vision module maps from YUV camera images to the locations, relative to the
robot, of any objects detected in the camera image. Vision also provides a heuristic
confidence score for each of the detected objects that indicates how likely it is that
the object is truly present in the image. We divide the vision pipeline into two stages.
The first state, low level vision, uses the CMVision library [2, 1], to perform color
segmentation on the image. CMVision uses a lookup table to map from YUV pixel
intensities to symbolic colors, such as red, blue, or orange, as shown in Fig. 2. The
library then builds up lists of the colored regions in the resulting image. These lists of
regions, which specify the bounding box and centroid of each region, are what we used
in the second stage of vision, high level vision, for object detection.

We implemented object detectors to extract the position and distance to several dif-
ferent classes of objects. The most important object detector computes the distance and
angle to the ball. We use several methods for determining the distance and angle of the
ball including area and center of the orange region, making use of the constraint that
the center of the ball is a known height off the ground, and circle fitting. Additionally,
we have an object detector for computing the distance and orientation of goal posts. If

a) Original Image b) Color Segmented Image

Fig. 2. An image from the robot before (a) and after color segmentation (b).

the crossbar on the top of the goal is visible and appears connected to the goal post then
vision can provide the additional information of the side of the goal that this post be-
longs to. We also include a line detector, that samples the white pixels in the image and
returns lines, corners and intersections in the image, which we can use for localization.
Lastly, we have a robot detector that detects robots in the distance, allowing us to plan
paths around them.

In addition to reporting the position and orientation of objects in the camera image,
the object detectors also compute heuristic confidence values between 0 and 1, which
indicate how confident we are that the object is truly present in the image. The tactics in
the behavior system then vary how they respond to the reported information depending
on the confidence values assigned to it.

During RoboCup’2009, we noticed that the lighting in the competition area would
fluctuate over the course of the day, which required us to constantly recalibrate the
color thresholds before each game. For RoboCup’2010, we intend to research more
robust methods for color segmentation, as well as other techniques that can be used for
object detection.

4 World Model

Our team makes use of a World Model for updating and maintaining the locations of
objects of importance. This module takes vision objects from high-level vision and
merges them with previous information about objects. In particular the world model
contains ball location and the positions of each of the goal posts. The world model
stores everything in local coordinates. Odometry information obtained from the Motion
Module is used to update the locations of all of the objects each frame. The world model
also decides whether objects are valid, suspicious, or invalid. Objects are valid initially,
and after a certain amount of time since they were last seen, become suspicious and
then invalid. The goal posts take longer than the ball to become invalid since they do
not move, and so the only cause of error is the robot’s odometry. When an object is
suspicious, the behaviors should look towards to objects to either confirm or deny its
presence. If an object is invalid, this means the world model does not know where it is.

Goal posts are somewhat trickier to model since there are two interdependent posts
on each goal. Vision will report a left or right goal post if it can see the crossbar, but
if it cannot it returns an unknown post. If we are given a left or right goal post we will
overwrite the old value in the world model. If this new post is not the correct distance
from the other post of the same color in the world model, the other post is marked as
invalid. We also attempt to use the previous positions of left and right posts to match an
unknown post to the correct side of the goal.

5 Communication

Given that there are 3 robots in each Nao team in RoboCup’2009, it was essential that
the robots communicate. Thus, we implemented role-switching, which is dependent on
communication between the robots.

The 2 field-players (i.e., not the goal-keeper) are attackers who attempt to score
goals. However, when one robot is close to the ball, the other robot heads towards a
“supporting” position. In order to achieve this, we implemented simple message passing
through UDP, where the robots send a numeric value describing how confident they are
about reaching the ball. The most confident robot then becomes the attacker, while the
other becomes a supporter and heads to the supporting position on the field.

6 Behaviors

Our behaviors are built on a Finite State Machine (FSM) framework. Our Behaviors
component takes input primarily from the World Model which holds the data we need
to make decisions and generates Commands that are executed on the robot. The primary
behavior we developed was that of the Attacker, Supporter and Goalie.

The attacker FSM cycles between 4 states: lost, approach, orbit, and kick. Each of
these states calls another FSM.

The lost state is used when the ball’s position is invalid in the world model. In this
state, the robot spins in a complete circle, searching for the ball. If the ball is not found,
he heads half a meter backfield in the center of the field, as determined by localization.
He then spins again and repeats the process.

The other states involve approaching and kicking the ball. The attacker is in the
approach state when the ball’s position is valid but the robot is still far away. In this
state, the attacker heads directly towards the ball. He then enters the orbit state, where
he orbits around the ball until it is lined up for a kick with a goal. The attacker lines
up for either a forward or side kick depending on which requires a shorter orbit. If the
attacker does not know where the goal is, he aligns based on localization and searches
for the goal as he orbits. The attacker will not kick the ball if the goal’s position is
invalid. After he is aligned, the attacker transitions to the kick state. He lines up his foot
precisely with the ball and then kicks towards the goal.

The supporter uses the same skills as the attacker, except that it does not approach
the ball or kick it. Instead, the supporter heads to a position close to the ball, but out
of the way of the attacker. This allows the robots to switch roles if the current attacker
loses the ball, or if the ball rolls to a position closer to the supporter.

Conceptually, the goalie behavior has 4 FSM states: lineUp, guard, search, and
clear. The goalie tries to line up between the ball and the center of the goal, when it is
in the lineUp state. If it is in position, the goalie goes into the guard state and stretches
its leg to maximize coverage of the goal. If the ball is lost, the goalie searches for it
(search state). At any point in time, if the ball is found to be within the penalty box,
the goalie enters the clear state, approaches the ball and kicks it away. Fig. 3 shows the
FSM states and transitions of the goalie.

Ball lost

Search

Ball found

Ball lost

Ball not in Ball lost

penalty box

Ball in penalty box

Fig. 3. FSM of the Goalie behavior

In order to move around the penalty box accurately, the goalie has to be well-
localized. The Localization component was designed to work across the entire field,
and was not precise enough for the goalie’s needs. As such, as separate localization
function was written specifically for the goalie. It used visual features such as the lines
and corners in the penalty box. The goalie’s localization function allowed the goalie to
remain in the goal box throughout all games in RoboCup’2009, and line up in the right
positions.

7 Motion

In 2009, the motion engine developed by Wright Eagle was used in the compeptitions.
The Wright Eagle motion engine models the robot’s upper body as a linear inverted
pendulum (Figure 4, 5).

The walk planning is considered as selecting a sequence of ZMPs that will yield
to stable walking by satisfying dynamical and mechanical constraints. An online sam-
pling method is employed to tackle this problem and the walk definition is simplified
by considering it a sequence of single-support phases instead of a more conventional
single-support / double-support alternations [4,5].

Another motion engine is currently under development and we are planning to re-
place Wright Eagle motion engine with our in-house developed engine for the 2010
competition.

(x,)

/.

Fig. 4. 3D Linear Inverted Pendulum model

-f
S
< /\/" e

{4
s b A
r‘-)f\’:f’ ;

Fig. 5. Simulated Nao robot and its joints

References

1. J. Bruce, T. Balch, and M. Veloso. CMVision, www.cs.cmu.edu/ jbruce/cmvision/.

2. J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image segmentation
for interactive robots. In Proceedings of IROS-2000, 2000.

3. Ashley W. Stroupe, Kevin Sikorski, and Tucker Balch. Constraint-based landmark
localization. In RoboCup-2002: The Sixth RoboCup Competitions and Confer-
ences, 2002.

4. Jinsu Liu and Manuela Veloso. Online ZMP Sampling Search for Biped Walking
Planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’08), Nice, France, September 2008.

5. Jinsu Liu, XiaoPing Chen, and Manuela Veloso. Simplified Walking: A New Way
to Generate Flexible Biped Patterns. In Proceedings of the 12th International Con-
ference on Climbing and Walking Robots and the Support Technologies for Mobile
Machines (CLAWAR), Istanbul, Turkey, September 2009.

